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Dimensions, and Sectional Properties; 1 

A = "total area of cross section 

= area of each flange 

= width of the-ban Jl^ck j’-i^ rf- 

- torsion constant 

® warping constant 

= constant depending upon cross sectional properties, see 

Eq.(l0.4) 

= height between the centerlines of the flanges 

~ moment of inertia of each flange about y-axis 

= polar moment of inertia of the cross section 

fourth moment of inertia about the shear center, see Eq.(l0.5) 

= half the polar moment of inertia about the shear center 

R 

Pc 
t 

K 

L 

tf 

tw 

numerical shape factor for cross section 

55 length of the beam 

53 thickness of each flange 

13 thickness of the web 

So = statical moment with respect to neutral axis 

2; 53 displacement along the length of the bar 

Material Properties; 

E 53 YoungTs modulus 

^zz ~ modulus for extension-compression along the axis of the bar 

Q = shear modulus 
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zx m shear modulus of orthotropio material 

^ » foundation modulus in torsion 

{-' « mass density of the material of the beam 

Forces, displacements and Momenta: 

Q 

T 

w 
u 

w 

0 

0 

0 

- moment in each flange 

- net bending moment in the cross section 

= axial compressive load 

* torsional buckling load 

= post-buckling load 

= external viscous force per unit length acting along the 

sides of the flanges opposing warping 

= shear force due to bending in the flanges 

= external torque per unit length of the beam 

= a constant equal to the static torque 

3 torsional couple 

= ®s+ Tw = torque 

= warping torque 

= x-displacement of the top flange oenter line 

= z-displacement of a point in the top flange 

= angle of twist 

3 normal function of 0 

= contribution of shear strain to the angle of twist 

= anS^e twist when shear strain has been neglected 

= warping angle 

- normal function of < 
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Stresses ana Strains; 

cr-x» = normal stresses in x, y and z directions respectively y’ ~b 

I'zx = maximum shear stress in flange bending 

®sh ~ shear strain at the center of the flange, x=0 

ez = z-component of strain 

Energies and Matrloeff! 

transformation matrix for displacements whose elements 

are functions of x, y and z 

0 a transformation matrix giving the strains in terms of 

generalized displacements 

D = matrix of material constants 

5 ** total load matrix 

K = total stiffness matrix 

® = total mass matrix 

q, E - column matrices of generalized displacements 

Q, r = column vectors of amplitudes of generalized displacements 

S ®'{total stability coefficient matrix 

= kinetic energy of the strained bar 

“ components of the displacement vector 

= total strain energy 

= potential energy 

=» matrix of stresses 

s matrix of strains 
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Non-dimensional Parameters? 

« l+s2K2- KS/ A2d2 

= I^h /2 IpL = longitudinal inertia parameter 

“ gcs^2/Ecw ~ warping parameter 

= ratios of eigen values (n=l to 4) 

2 _ 

a 

K2 

rn 

s2 

\ 
z 

a 

A. 2 

A 

A' 

= EIf/K A^GL2 = shear parameter 

, / o 4 V1/2 
53 (EO^/ f 1^1 ) t = dimensionless time 

=* z/L * non-dimensional beam length 

rv *** E O’ 3 zzr zx 

^3 = (Cs+ X/2 E'Afh2)/ Ij 

2, 
nf, 

f 2 ■ vs 
2 
/AECW = axial load parameter 

or 

t2 

or ,IpL2/AEGw = torsional buckling load parameter 

*■ 2 / 

or = P IpL /AE0W = Post-buckling load parameter 

4 
= K^L /4E0w » foundation parameter 

> O - Vs£ = critical frequency parameter 

2 -0 4 2 
/N = i Pn/EGW = frequency parameter 
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Miscellaneous; 

cQ = bar velocity = (^zz/ p 

Og = shear wave velocity = (&Zy/ P 

0^ = phase velocity for torsional waves 

i » Y*^i' 

n =5 mode number 

N = Number of segments into which the beam is subdevided 

Pn =* natural frequency of vibration in radious per unit time 

t =- time 

T = linear period of torsionalvibration 
*v 

T = non-linear period of torsional vibration 

X = normal function giving the shape of mode of vibration 

an’ an* P°s^ive real quantities (n=l,2,3) 

p = torsional amplitude in non-linear analysis 

= torsional damping constant 

Pw = warping damping constant 

np- = torsional excitation function 

_ * 

k = a function of time in non-linear analysis 

6 = error function 

*5 = variational operator 

= wave number = 2Tc/pp 

CO = torsional excitation frequency 



^ » wavelength 

Salient symbols are listed above. Other symbols are defi¬ 

ned in the body of the thesis as and when they appear. 
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ABSTRACT 

This thesis presents some analytical studies of linear and 

non-linear torsional vibrations and stability of uniform thin- 

walled beams of open section resting on continuous elastic foun¬ 

dation subjected to a time-Invariant axial compressive load in¬ 

cluding the effects of longitudinal inertia and shear deformation. 

Based on the Timoshenko torsion theory, the problem of linear 

torsional vibrations and stability of uniform lengthy thin-walled 

beams of open section resting on continuous elastic foundation 

subjected to a time-invariant axial compressive load is analyzed 

exactly by using the method of separation of variables. The fre¬ 

quency or buckling load and normal mode equations are derived for 

various end conditions. Approximate expressions are derived for 

the torsional frequency and buckling loads using Galerkin's tech¬ 

nique. The results presented for some typical boundary conditions 

reveal that for lower modes, the increase in the foundation para¬ 

meter increases the frequency parameter significantly and the 

increase in the axial load parameter decreases the frequency para¬ 

meter considerably. The combined influence of axial load and 

foundation parameters is observed to be the superimposition of 

the individual effects on the frequency of vibration. 

Finite element foimulation of the problem of free torsional 

vibrations of thin-walled beams of open section resting on con-* 

tinuous elastic foundation is also presented. The stiffness and 

consistent mass matrices are derived and the eigen value problem 
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ia formulated. The eigen values obtained by finite-element 

method compared favourably well with the exact values even for 

a coarse subdivision of the beam into six elements* A digital 

computer programme is written for obtaining the results for the 

frequency parameter for various boundary conditions. 

As the corrections due to second order effects may be of 

importance if the effect of cross sectional dimensions on fre¬ 

quencies of vibration are desired, an exact analysis is presen¬ 

ted for free torsional vibrations of short thin-walled beams of 

open section including the effects of longitudinal inertia and 

shear deformation. New frequency and normal mode equations are 

derived for six common types of simple and finite beams. Solu¬ 

tions of the frequency equations for some typical boundary con¬ 

ditions are obtained on a digital computer. The individual 

effects of longitudinal inertia and shear deformation on the 

torsional frequencies of a simply supported beam are shown gra¬ 

phically. The torsional frequency values and the modifying 

quotients for the first four modes of vibration for some typical 

boundary conditions are presented in tabular form suitable for 
Olt’y 

design use ;A showing the combined effects of longitudinal inertia 

and shear deformation. Approximate frequency equations for some 

typical end conditions are obtained using Galerkin*s technique. 

It is observed that the effect of shear deformation is to dec¬ 

rease the stiffness of the beam and thus results in corresponding 

decrease of natural frequencies. The decrease is relatively 

small compared to the increase due to warping; however, the impor- 
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tanoe of shear deformation appears when higher frequencies 

are considered. 

A finite-element formulation of the problem of free-tor- 

sional vibrations of short thin-walled beams of open section 

including the effects of longitudinal inertia and shear defor¬ 

mation is also presented. The corresponding stiffness and mass 

matrices including these second order effects are derived. The 

eigen values obtained by the finite element method compared 

very well with the exact values even for a coarse sub-division 

of the beam into three elements. A digital computer programme 

is written for obtaining the results for the frequencies and 

mode shapes for various end conditions. 

The problem of forced torsional vibrations of thin-walled 

beams of open section is studied including the effects of longi¬ 

tudinal inertia and shear deformation. Viscous damping forces 

arising separately from torsional and warping velocities are in¬ 

cluded. The two ooupled, fundamental equations of motion are 

formulated in terms of angle of twist and warping angle. The 

method of solution is demonstrated for arbitrary external tor¬ 

que for the beam having both ends simply-supported. Numerical 

results are presented for the case when the torque is uniform 

over the span and varies sinusoidally in time. Amplitude res¬ 

ponse is plotted against torsional excitation frequency for vary¬ 

ing amounts of torsional and warping damping and is compared to 

the response for the classic beam for the first five symmetric 

mode shapes. The amplitudes for thetbin-walled beam including 
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shear deformation and longitudinal inertia are found to be con¬ 

siderably larger. 

As the increased utilization of composite materials in 

stamotural applications has made their analysis ever more impor¬ 

tant, the problem of torsional wave propagation in orthotropic 

thin-walled beams of open section including longitudinal inertia 

and shear deformation is solved. The equation for free torsional 

vibrations of thin-walled beams of open section of orthotropic 
i 

material including the effects of longitudinal inertia and shear 

deformation is established analogous to that for isotropic mate¬ 

rials. Many fiber-reinforced plastics and pyrolytic-graphite 

type materials whioh are mostly in use, are orthotropio or trans¬ 

versely isotropic in the sense that the ratio of in-plane modulus 

of elasticity to shear modulus is large. It is shown that, for 

these materials, the corrections due to longitudinal inertia and 

shear deformation may be of one order of magnitude greater than 

the corrections in the isotropic case. Graphs are given of the 

phase velocity versus inverse wavelength for various aspect ra¬ 

tios of beams of different materials. 

The problem of torsional vibrations and stability of short 

thin-walled beams of open section resting on continuous elastic 

foundation and subjected to an axial compressive load including 

the effects of longitudinal inertia and shear deformation is 

solved by means of an exact analysis. Results for buckling loads 

for various boundary 'conditions are presented in tabular form 



showing the effects of shear deformation. The values of tor¬ 

sional frequency parameter for the first four modes of vibra¬ 

tion for various boundary conditions and non-dimensional para¬ 

meters are presented in tabular form suitable for design use. 

This problem is also solved by means of finite-element method 

and an excellent agreement is observed between the results from 

exact analysis and those from the finite-element method. 

It is very well known that a large number of problems of 

torsional vibrations and stability of thin-walled beams arising 

in modern high speed aircraft structures, missiles and launch¬ 

ing vehicles cannot be adequately explained by the classical 

linear theories alone, since the torsional deformations of these 

beams are usually of such a magnitude that the assumption of 

small rotations of cross sections will no longer be valid. 

In view of this, an attempt has been made further in this 

thesis to derive and solve the governing differential equation 

of large amplitude torsional stability of lengthy thin-walled 

beams of open section resting on continuous elastic foundation. 

Graphs indicating the combined influence of large amplitude and 

foundation parameter on the torsional post-buckling loads for 

simply supported and damped beams are presented. Including the 

effects of axial compressive load and elastic foundation, the 

problem of non-linear torsional vibration and post-buckling be¬ 

havior of thin-walled beams resting on continuous elastic foun¬ 

dation is also Investigated. 
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la. flSHERAIi: 

In an effort to gave weightytill retaining high strength 

capabilitiesj many contemporary structural systems are designed 

with lower margins of safety than their predecessor3. The cri¬ 

terion of minimum weight design is particularly prevalent in 

the design of aircraft, iaigBile, and space craft vehicles. One 

obvious means of obtaining a high strength, minimum weight design 

is the Use of light, thin-walled structural members of high stre¬ 

ngth alloys. Per intricate structures such as apace-crafts, 

beams of standard cross section my not be the most efficient or 

convenient structural members to use. Thin-walled beams of open 

section are frequently employed for their structural efficiency. 

With the improvement of extrusion methods in metal forming, beams 

of different shapes of cross sections can be formed to order. 

Occasions often arise when uniform doubly symmetric cross sec¬ 

tions are more convenient to use. Examples of such structural 

members that have gained great favour as stiffeners in aerospace 

design are the 1,5, Channel and angle sections. 

Although no attempt has been made in the previous para¬ 

graph to rqgorougly define a thin-walled beam, it is necessary 

to do go in order that one fully understands its meaning when 

used in ensuing discussion, A rectangular beam as a structural - 

member is characterized by having two dimensions, the width and 
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dopth of the arose sootion of comparable alaa bat amail In oom« 

parision with the third dimension, tlio length* A thin-walled 

beam, on the other hand, Is characterized by its three dimensions 

being of different orders of magnitude■ The thickness of the 

benm ia small compared to the characteregtic diui-enaions of the 

cross sectfont and the crcFin sectional dimennfono are small com¬ 

pared to tho length of the beam. 

It has long beam known that a beam with nongymmetrical 

cross section tinder loads will, in general, not only Inflects 

but also will^wiot* Only under spools! loading along the fie- 

xu-re axis* a line joining the shear centers, will the bean de^- 

fleet without twist. -The concept of shear center is well known 

and is discussed in test books* Essentially* it is a point 

through which the resultant of the shear forces of the cross 

section pasnee* If the loading does not pass through the shear 

center, a torque is generated by the loading and the resultant 

of the reactions from the section, Such a torque will cause 

the twisting of the beam + When a thin—walled bean ia subjec-- 

ted to dynamic excitation, the inertial loading due to accele¬ 

ration of the bearn Itself has to be taken into account* The 

resultant of such loading may be considered to pass through the 

Centroid of the sectionP Unless the shear center of the section 

coincides with its centreid, both bending and torsional vibra¬ 

tions will result* Due to the low torsional rigidity of thin- 

walled open section beams, the problem of torsional vibrations 

and stability is of primary interest. 
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1.2. BRIEF RE7lESr OP RBL3VMT LITERATURE: 

Extensive tepea^oh. bea been conducted in the field OX 

thi.n-vm.lled structural members which haa been well documented 

in the litereturc',' and detailed bibliographies are already 

available. Therefore, only a brief survey of the development 

of the existing literature directly related to the present in¬ 

vestigation will be included here. 

1.2.1. ELASTIC STABILITY: 

■ , ' 

Since the eighteenth century investigation of column 

instability by ISuler, a great wealth of information has been 

document tad concerning the nature of instability* For instance, 

the instability of columns* beam-columns* plane frames f trusses/ 

platesr shells have been the objects of raany research cf~ 

forts a Although the indifijual invest!gations are too numerous 

to cite p several texts have appeared that provide excellent an¬ 

thologies for these investigations. 

■ ! 

I’erivation of the fundamental theory of strength and 

stability of thin-walled members was performed by Goodler* 

Timoshenko, Vlasov and others- Simoehenko ( ?S") initiated the 

concept of non-uniform torsion when he considered warping of 

the cross sections of a symmetrical I-beam subjected to tor¬ 

sional moment* Wagner ( h O } generalised the Timoshenko tor¬ 

sion theory. Goodier 37} published a series of studies in 

which he simplified and proved acme of the assumptions propo¬ 

sed by earlier investigators. Theories of lateral stability 
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and flexural-torsional stability of uniform th in-wall go beams, 

upto 134B, were unified by Timoshenko ( ), Vlasov's (70 l) 

exteneive investigations of thin-walled elastic members were 

published in book fora in 1940. A new edition containing com¬ 

prehensive study of equilibrium, stability, and Vibration of 

thin-walled members of arbitrary cross sectlong was published 

in Rubelan in 1958 end translated into English in 1961, 
I 

Two other classical te;ct books dealing with the stabi¬ 

lity of members were published by Bieieh ( U ) in 195S and 

Timoshenko and Gere ( c/'f) in 1961. Host recent is Ziegler’s 

monograph ( in 1968, on structural stability in which he 

emphasises the conceptual aspects of the more recent developments 

of stability theory. Surveys of the theory of thin-walled mem¬ 

bers, which include numerous references, were performed by 

Howiainki ( ti /) In 1959, Panovko ( £ ?) in 1957 and Yi-Yuan, 

Yu v 0 3) in 1971. A survey of literature on the lateral in¬ 

stability of beams was made in i960 by lee ( )• The effect 

of mini stresses, arising from combined bending and torsion 

of thin-walled beams, on the torsional regidity of the beam was 

investigated by Goodier (38 ) m l951 ^ Sngel ) ±Q 1953i 

In 1944, Goodier and Barton extended Timoshenko’s theory 

of non-uniform torsion of an I-beam to include not only the ben¬ 

ding of the flanges in their own planes but also considered the 

effect of web deformation on the torsion of the beam til), fur¬ 

ther investigation of this effect Including experimental work 

was performed by several researchers- The Goodier-Barton effect 
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was found to toe of significant importance for tile ease of 

plate girders whose cross sections were such that the ratio of 

"the flange thickness to the web thickness was large or if the 

length of the web wae much larger than the length of the 

flange 

Gregory (h i- ) in 1961* proposed a theory which consi¬ 

dered a non-linear longitudinal stream system In members sub¬ 

jected to large elastic tonslun&l displacements* Gregory's 

theory was developed by Black (//,/!) in 1965 and In 1967* in 

a theoretical and experimental study of monosycEzietrio thin- 

walled toearns subjected to bending and torsion* Approximate 

solutions of a modified non-linear equation were compared with 

the experimental results and also with the theories of Timo¬ 

shenko C *fS ) and Goodier ( A continuous effort has also 

been made to close the gap between structural theory and engi¬ 

neering codes of practice Recent research studies of 

interest to designs and research workers are presented in a 

collection of papers, published in 1967, on the stability and 

strength of thin-wailed structural members and frames ( )+ 

fho ihfluen.ee of second Order effects such as distor¬ 

tion of the column cross section, large displacementB, shear 

deformation, residual stress and initial deflections on the be¬ 

haviour of blaxinlly loaded columns is evaluated by Culver (3-1* ) 

In 1965. Numerical calculations, Including these second order 

effects, Indicated that problems exist for which these effects 

are considerable* Second order effects influencing biaxially 



loaded columns were discussed by Goodier ( kO ) and Heilig ( ^4.) 

and those effects included cross sectional distortion due to 

torsion and shear deformations, f 

Tapered thin-walled beams are of interest in optimum 

design, Gere and Carter ( 3 ?> ) obtained the critical buckling 

loads for tapered columns. A finite element formulation using 

Gelerkin* s method for the buckling problem of tapered members 

was presented by Morrel and Lee ( $)• The elastic stability 

of axially loaded tapered columns has been studied analytically 

by several investigators The problem of torsional buck¬ 

ling of axially loaded tapered columns of wide-flanged cross 

section has been recently studied analytically by Culver and 

Preg ( 23> ), using finite-difference method. In addition, the 

differential equations for the general case of tapered wide- 

flanged beam-columns have been derived using the Vlasov*s me¬ 

thod (/£ 7 ) for uniform beams. The determination of the initial 

yield load for tapered beam-columns has also been investigated 

( 3o ). An experimental investigation of the elastic stability 

of tapered beam-columns has been reported ( /). Lee ( ^ ) 

presented an analysis of non-uniform torsion of tapered I-beams 

in 1956, the taper being only of a restrictive type. 

All the above investigations and a host of others treat 

the torsional or flexural - torsional buckling problems from a 

purely mathematical approach. Such an approach includes the 

solution of a trio of coupled differential equations of equili¬ 

brium (these equations may be uncoupled under some instances) 



£0* oolu®. ol Wi»„ cross sections, loadings and boundary 

condmona. this approach provides on, with exact solution, 

(mathematically spanki,*) f,r a given probLm. One Bhort_ 

0°”lnf! “UOh “ *P<*M“* l’ «»* «»» to th, complex nature 

the equilibrium equation, euoh .mathematical difficulties 

“ "°1,-“nU°n* ooapleg loading,, or arbitrary bouMary 

conditions can not be easily handled. 

To complement the known exact solutions, attempts have 

to obtain approximate solutions to the more difficult 

again hatheuatioally speaking, proble„,. lh. t.obniqu. „,ea 

^ the «PPbOil„t, result, i, the method of or 

aerate element techniqu,. Many of th, es,rlj ^ ^ 

finite element method were presented in teohoioal Journal,, 

out reoently tax,, by Prsemienieoki ( *,3 ) and Zienhie.ica ( //^ 

av, appeared that summarised various inve.tJg.tions utilising 

hi, modern taohniqua. Phase tart, oovar auoh varied topio, a, 

an, stress, plana strain, axisymmetric stress analysis, three 

vZ,Tnal I*"" a“ly!,iS' b“ainS °£ b6“S’ - -U., 
8 ele,stl0 »«*»». and structural stability, 

Oaing th. unit.-,l,„e„t ,,oh„iqu„ Krajclnovio ( <S ) , 

developed a formulation ior thin-walled mambars basad on the 

«ae ot hyperbolic inactions to express the twist. the., tun.- 

onswhxch are the solution to the exact differential equation 

J ’ l6ad ^ °°mPliCat0d expressions in torsional 

nd warping constants. It does not include the effects of in- 

lities due to torques. Henoe, its applicability to general 

frame instability in limits v k 
limited. Kabaila and Fraeijsde Venbeke( 46) 

1 



formulated a finite-element model that considers only axial 

forces in the stability analysis. The formulation is only ap¬ 

plicable to solid beams whore the shear oontor coincides with 

the center of gravity. It neglects warping rigidity, which is 

of major importance in the analysis of thin-walled members( 7# ). 

A linear formulation was used to express the twist, as was done 

earlier, by Przemieniecki ( 73). The finitefelement method 

has been shown, by Pardoen ( (f.o)f Barsoum ( 6, S’ ) and Barsoum 

and Gallangher (7 ) to be completely general in that it pro¬ 

vides one with a means of solving problems involving arbitrary 

loading and boundary conditions. Although, only an approximate 

method, the finite-element method has provided results that are 

sufficiently accurate for engineering purposes. 

1.2.2, VIBRATIONS AND WAVE-PROPAGATION: 

For the past three decades mechanical vibrations have 

been recognized as a major factor in the design of air craft, 

marine and machine structures. Mechanical vibrations produce 

increased stress, energy loss and noise that should be consi¬ 

dered in the design stages if these undesirable effects are to 

be avoided, or kept to a minimum. This is essentially true in 

the area where the total mass of the system is to be held to a 

minimum. Vibratory motion can produce very disastrous results 

as in the case of either the Tacoma narrows bridge which fell 

because the wind excited it at a natural frequency, or the ill- 

fated Electra I Commercial air craft that encountered severe 

engine vibration which required major modification of air craft. 
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:: zT\mnt to be n°tK'ie *°°•*»‘ 
^ after, instead „ hefore, the f.llure has oc_ 
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matioal ^TT «*- 

Possible the use cf th , " ratl°" Wh8r.v.r 

recommended becaus eTa It TT^ ^ 
the simplest an, most direct methods 
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Of predicting vibratory characterestics. However, it 

eaCh °f these fornal solutions has very definite 

limitations because they have been obtained for a specific type 

of beam and are not applicable to the general case. Since 

there had not been developed a rigorous mathematical technique 

that will solve all types of beam vibration problems, it was 

only natural that various approximate techniques have been de- 

eloped to fill m the gaps left in the formal solutions. One 

of the most powerful techniques developed was the Rayleigh-Hit* 

method which is an energy principle that in the absence of fri¬ 

ctional losses, the total vibratory energy of a vibrating body 

must continuously change from all strain energy and no kinetic 

energy to all kinetic energy and no strain energy, and the fre- 

quency of change must be a natural frequency. 

The first step In the application of the EqielRh-Sltc 

■ethod Is to assume a possible model aha,, of the beam corres¬ 

ponding to the lowest frequency. Then it will be possible to 

calculate the maximum strain energy In the beam. By oon.ld.r- 

ing that the assumed mode shape 1. p.rlodle 1„ th. 

inetic energy can be obtained, .hen the two energies are equa- 

it is possible to solve for the frequency. Succeeding 

possible mode shapes must be assumed until the lowest calcula¬ 

ted frequeney ls obtained, This technique converges only to 

the lowest natural frequency of the system. The higher natu¬ 

ral frequencies can be obtained only by using the orthogonality 

property that exists between the mode shapes. A complete dls- 

cussion of the ^Sigh-Kits technique is presented by Temple 
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and Beckley ( ). 

GftvrlPvnd ( Al ) u«Qd tho n^laigH-^Uta mabhod to inv«a~ 

^bigate the coupled torsional and transverse vibration of canti¬ 

lever beams having constant channel cross section. He was able 

to observe that for any one transverse mode of vibration there 

will be two torsional modes and that the coupled natural fre¬ 

quency can be expressed as functions of the uncoupled trans¬ 

verse and uncoupled torsional frequencies. Timoshenko ( /00 ) 

was also able to make this observation for a simply supported 

channel cross-section. G-arland was able to obtain a remarkable 

degree of correlation between the predicted and the experimen¬ 

tally measured results. Because he was dealing with only the 

lowest natural frequencies, he was not in requirement of the 

use of the orthogonality condition that would be necessary for 

obtaining the higher natural frequencies. 

Bennett ( 9 ) developed an improved matrix technique 

for investigating the vibratory characterestics of a beam hav¬ 

ing a plane of symmetry perpendicular to the plane of transverse 

vibration. For a beam having a non-collinear longitudinal mass 

and shear center axes, there will be a coupling between the 

transverse and torsional vibrations. The coupling is produced 

when the reversed effective force caused by the transverse 

vibration does not act through the shear center of the cross- 

section. To date there has not been developed a rigorous mathe¬ 

matical solution for all possible variations in cross section, 

loading conditions and methods of support. Several authors 
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have solved the equations by imposing specific limitations 

the method of support or on the variation of the cross section. 

Some researchers have used an energy method or ah iterative 

method to approximate solutions where the formal solution does 

not exist. These approximate methods have a tendency to become 

very tedious. The technique of investigating the higher natu¬ 

ral frequencies introduces complexities that are difficult to 

understand physically. The matrix method proposed by Bennett 

( ”/ ) is valid for any loading conditions or method of sup¬ 

port. In his work, three different types of beam vibrations 

are considered, coupled torsional and transverse, transverse 

alone and torsional alone. The governing differential equations 

were solved approximately by using a digital computer and results 

obtained are observed to be within the range of engineering ac¬ 

curacy. 

Another approximate but more elegant technique is the 

finite—element technique which provides one with solutions for 

nny general set of boundary conditions and the variation in the 

cross section. This technique has been successfully used by 

C 7% ) for the solution of the coupled bending—torsion 

vibrations of thin-walled beams of open section and non-linear 

flexural vibrations of rectangular beams. Pardoen ( cfo ) and 

Barsoum ( 6 ) presented satisfactory solutions for the vibra¬ 

tion and dynamic stability problems of thin-walled beams of 

open section utilizing the finite-element method. Although the 

finite—element technique has been used to predict the natural 

frequencies and mode shapes of beams, the method has yet to be 
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extended to consider the torsional vibrations and stability of 

thin-walled beams of open section resting on continuous elastic 

foundation. 

Stress .wave propagation in elastic solid media have been 

subjected to analysis since the early investigations of poisson 

( CI'L). Recent developments have been motivated by the ever in¬ 

creasing need for information concerning the response of struc¬ 

tures to high dynamic loads. The beam as a fundamental element 

of structures, received the first attention of investigators in 

the field. The early work of Pochhammer ( 'll ) and Chree ( / ~J ) 
on the circular cylindrical bar with traction-free surface was 

re-examined in the early 1940's but progress was slow on account 

of highly intricate transcendental frequency equations resulting 

from dispersion duo to the presence of boundaries. The first 

three modes of longitudinal and flexural wave transmission were 

not known until found by Davies ( JUf.) in 1948 and Abramson( / ) 

in 1957. 

\ 

The complexity of the exact analysis even for simple 

geometry of a circular cylindrical bar, emphasized the need for 

physically satisfactory approximate theories. To satisfy engi¬ 

neering requirements, these theories should be good for short 

wave lengths which occur in problems of steep transients or 

high frequency oscillations in bars. The elementary classical 

theories of llavier for longitudinal vibrations, Bernoulli- 

Euler for flexural vibrations and Coulomb for torsional oscil¬ 

lations were reviewed and with the exception of the latter, were 

found to lead to physically impossible results ( 7L ). As a 
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consequence, emphasis was placed on developing more accurate 

approximate theories for longitudinal and flexural vibrations. 

Although Timoshenko ( lo I ) in 1921 proposed a theory 

for flexural oscillations which included the effects of shear 

deformation and rotary inertia, it was not until the last de¬ 

cade that the Timoshenko theory was really put to experimental 

and analytical tests. During this.period, in addition to a lot 

of allied literature on exact theories of plates, and over a 

dozen of books, monographs and surveys, not less than fifty 

papers appeared dealing with approximate theories. These papers 

included new theories,' their mutual comparison, comparision with 

the known information from exact theories and experiment. The 

Timoshenko theory for flexural waves and the Mindlin-Heipann 

theory ( ) for longitudinal waves were found most satisfac- 
Im. 

tory. The rest of^literature with the propagation of pulses is 

based on these theories. Brief details have been previously 

summarized by Kolsky (i>"j ), Abrahmson, Plass and Ripperger( Z. ), 

Green ( 4/ ), and more recently by Redwood ( ) and Miklowitz( 8b 

However, comparable torsional oscillation analysis was 

virtually neglected and not more than four to five papers on 

the topic have been published. The reason is the fact that 

Coulomb classical theory gives the same first-mode results as 

the exact theory. The available information i3 almost limited 

to the circular cylindrical bar. Thus, there exists a lack of 

satisfactory approximate and exact theories for torsional wave 

propagation in non-circular bars, especially these used in 

structural applications. Very often thin-walled beams of open 

section are used as structural members in light weight aircraft 
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and building construction. These members usually fail under 

torsion or combined bending torsion because of their low tors- 

ionaly rigidity wftieh makes them susceptible to torsional buok- 

ling. A self-contained and comprehensive account of bending 

and torsion of thin—walled beams of open section was given in 
/ 

a paper published by Timoshenko ( i S') in 1945. As structural 

members may be subjected to resonant vibrations under dynamic 

loads, it is necessary to study their torsional properties in 

order to understand their response to torsional excitation.. 

The inadequacy of a Saint-Venant elementary torsion 

theory for short wave lengths was hinted at by Love ( Jh )f 

who suggested a correction for the longitudinal inertia asso¬ 

ciated with torsional deflection. However, both the elementary 

theory and hav«,« cipproacininMou have* bho tmtne tlnf«ob« 

their counterparts in longitudinal wave-propagation theory. 

The dynamic equation used by Gere ) in his torsion analy¬ 

sis was essentially that previously derived by Timoshenko( 

and he studied the effect of warping of the cross-section on 

the frequencies o^ vibration. These equations are-oalled the 

Timoshenko Torsion theory in the sequel and are found to lead 

to physically absurd results for short wave length waves. 

To present a much needed practical engineering theory, 

a strength of materials theory is derived and analyzed by Aggar 

wal ( 3 ) in his thesis, including the effects of shear defor¬ 

mation, longitudinal inertia and warping of the cross-section. 

At high frequencies and short wave lengths a new mode of the 

wave transmission is added. This arises from the coupled inte- 
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raction of the torsional deformation and bending effects of 

shear deformation and longitudinal inertia. The Aggarwal's 

theory lead to theoretioally satisfactory results for the first 

mode of transmission over a wave length spectrum wjleh included 

moderately short wave lengths, and agrees with previous appro¬ 

ximations for large wave lengths. The group velocity for the 

second mode is shown to increase monotonioally from zero for the 

longest waves to the bar velocity for very short wave lengths, 

which is in agreement in form with the higher modes of the exact 

theory for circular cylindrical bars In many respects 

the analysis of Aggarwal's theory proves to be analogous to that 

of Timoshenko * s flexural theory ( /*?/ ). 

The transient response arising from a step torque app¬ 

lied impulsively at the end of a semi-infinite I-beam is analy¬ 

zed by Aggarwal ( - ) and the non-dimensional equations are- ber 

solved using Laplace transforms and a closed form solution in 

integral form is obtained. For the sake of comparison, he sol¬ 

ved the same impulsively applied step torque problem according 

to the Timoshenko torsion theory. He also analyzed the problem 

of free and fqjced vibrations of I-beams according to his theory 

which includes the effects of longitudinal inertia and shear 

deformation. He noticed a completely new spectrum of natural 

frequencies at higher frequencies due to the interaction bet- 
i 

ween torsion, shear deformation and longitudinal inertia effects 

The frequency equations and expressions for model functions arefv 

derived for a number of cases but he limited the discussion 

regarding the existence of the second frequency spectrum only 

>' ' 7~T : 

■ J i| 
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to the case of the simply supported beam because of the highly 

transcendental nature of the frequency equations which further 

include the parameters of warping, shear and longitudinal in¬ 

ertia. The frequencies obtained according to his theory are- 

compared with those previously obtained by Gere ( 3 i-) who used 

the Timoshenko torsion equation. The shear effect is shown to 

result in a decrease of beam stiffness and corresponding dec¬ 

rease of natural frequencies. Though, the decrease i-s rela¬ 

tively small compared to the increase due to warping; the in— 

fluence of shear deformation is observed to be considerable at 

higher frequencies. Further, ! Aggarwal ( 3 ) established an 

Orthogenality relation for the principal modes of vibration and 

treated the problem of forced vibrations under vary general loi 

Where as Aggarwal's contribution was limited to an im¬ 

provement of the previous theories of uncoupled torsional vibra 

tions, Tso's contribution (/«^) waa in the field of coupled 1 

torsional and bending vibrations of thin-walled beams of open 

section. In his thesis, Tso ( /dfy.) derived a higher order thee 

including the effect of shear strain induced by bending and war¬ 

ping of the beam. He compared the spectrum curves of the higliei 

order theory with those from the elementary theory for various 

boundary conditions for a special family of non-symraetric sec¬ 

tions. He performed an experiment on two specimens to determinj 

their natural frequencies at different beam lengths and compa¬ 

red the experimental results with those predicted from the two 

theories. He has concluded that when the beam is long, the ele¬ 

mentary theory is adequate to predict the natural frequencies 
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for torsion predomenant modes. For bending predominant modes, 

the higher order theory should be used. The higher order 

theory derived by Tso ( i04-) serves also as a guided for the 

range of validity of the elementary theory. In the experimen¬ 

tal observations, he found certain non-linear behaviour of the 

thin-walled beam. Under special circumstances, whep the beam 

is excited at resonance at a higher mode, he observed a ten¬ 

dency for the beam to shift from the higher resonant mode to 

vibrate at its fundamental mode, resulting in a higher order 

subhormonic oscillation. Hence he made an analysis to show 

the possibility of such a behaviour if the inherently non-linear 

governing equations for coupled torsional and bending vibrations 

are used. 

Reoently In 1967, Aggarwal and Granch ( 4 ) published 

a paper as an extension to the work of Aggarwal (3 ), by in¬ 

cluding an analysis for the coupled bending-torsional vibrations 

of a channel beam. The equations governing the motion of the 

channel beam are derived using Hamilton1s principle and include 

the effects of warping, longitudinal inertia and shear deforma¬ 

tion. These equations explicitly resemble those derived by 

Iso ( /o ^ ) for the more general case of mono—symmetric thin- 

walled beam of open cross section. However, the approach of 

Aggarwal and Granch seems to be different from that of Tso. 

Whereas Tso, analyzed the vibrations of a mono symmetric thin- 

walled beam, torsional wave analysis is made by Aggarwal and 

Granch for the case of an I-beam and a channel beam. 

A more general theory of vlbrntiopn of cylindrical 

bubco which includes the secondary effects such as transverse 
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shear, longitudinal inertia and shear lag was presented by 

Krishnamurthy and JogaRao ( lo ). They also brought out the 
\ 

analogy between the flexural and torsional vibrations,of dou¬ 

bly symmetric tubes. In Part IV of their theory ( 10), re¬ 

sults for simply supported open tube of doubly symmetric I - 

seotion wore presented. The -other boundary conditions were 

not analyzed. 

1.3. AIM AMD SCOPE OP THE PRESENT INVESTISATION: 

In the above investigations 7^Jo.tj) on the torsional 

vibrations of thin-walled beams of open section including the 

second order effects such as longitudinal inertia and shear de¬ 

formation, only regorous mathematical solutions are attempted. 

This approach actually limited their solutions only to simple 

end conditions suoh as a simply supported beam. Stating that, 

the frequency equations arc highly tranooondontal in nature, 

Aggarwal ( ) dirt noli »l; fernmiii bin* aolu I. l-mipi rur boundary con¬ 

ditions other than the simply supported ends. However, with 

the advent of high speed digital computers, it is not too dif¬ 

ficult to obtain the solutions for these transcendental frequ¬ 

ency equations. 

The present thesis aims at developing exact and appro¬ 

ximate methods of analysis to tackle various boundary conditions 

without much difficulty. An attempt has been made, to extend ‘ 

the previous discussions on torsional vibrations and stability 

analysis of thin-walled beams of open section, to include the 

effects of axial compressive load, continuous elastic foundation, 

longitudinal inertia and shear deformation by making use of- exact 
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and approximate methods of analysis. A non-linear analysis is 

also made to study the influence of large torsional amplitude 

on the non-linear period of vibration. Further, the effects 

of axial compressive load and continuous elastic foundation on 

linear torsional behaviour of thin—walled beams of open sec¬ 

tion are also investigated. 

• 

In particular, Chapter II deals with the analysis of 

torsional vibrations and stability of lengthy uniform thin- 
■ 

walled beams of open section resting on continuous elastic foun¬ 

dation and subjected to a time-invarient axial compressive load 

by means of exact and approximate methods. A finite-element 

formulation for the same problem which is useful both for uni¬ 

form and non-uniform beams is presented in Chapter III. The 

comparison between the results from the exact analysis and ap¬ 

proximate finite element method 1b shown to be excellent even 

for a coarse sub-division of the beam. 

* * 

In Chapter IT, an exact analysis is presented for free 

torsional vibrations of short uniform thin-walled beams of open 

section including the effects of longitudinal inertia .and shear 

deformation. Expressions for orthogonality and normalizing 

conditions for the1 principal normal modes which are useful in 

solving forced vibration problems and which include both the 

angle of twist and warping angle are obtained for both the gene¬ 

ral case and for beams with various simple end conditions. To 
(aiXIw 

fescilitato^the designers> extensive design data pertaining to 

\ ■ ‘ ' 
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wide-flanged I-beams with various end conditions is presented. 

Algo, approximate frequency equations for clamped and olamped- 

simply supported beams are derived making use of the Galerkin 

teohnique. A finite element formulation of the problem is pre¬ 

sented in Chapter V. Hew stiffness and mass matrices are pre¬ 

sented whioh include^ the effects of longitudinal inertia and 

shear deformation. The results obtained by the finite element 

method are in good agreement with the exact ones. 

An analysis for the forced torsional vibrations of thin- 

walled beams of open section including the effects of longitu¬ 

dinal inertia, shear deformation and vinoous damping in given 

in Chapter VI. Chapter VII deals with the problem of torsional 

wave propagation in orthotropic thin—walled beams of open sec¬ 

tion including the effects of longitudinal inertia and shear 

deformation. 

In Chapter VIII, the problem of torsional vibrations and 

stability of short uniform thin-walled beams resting on contin¬ 

uous elastic foundation and subjected to an axial static oomp- 

ressive load including the effects of longitudinal inertia and 

shear deformation is analyzed by means of an exact method. 

Approximate expressions for the frequency and buckling load are 

derived for clamped and clamped-simply supported beams utiliz¬ 

ing Galerkin’s technique. A finite-element solution of the same 

problem ia presented in Chapter IX. 

A non-linear analysis for the torsional stability of thin- 

walled beams of open section at large amplitudes is presented 

1 
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in Chapter X. In Chapter XI, the effects of axial time-inva¬ 

riant oompressive load and elastic foundation on the non-linear 

torsional vibrations and stability are analyzed. In Chapter XII, 

salient conclusions are arrived at, bringing out the practical 

significance of the problems solved. Also the scope for fur¬ 

ther investigation is discussed. 

Available reprints of the papers published on part of the 

work presented in this thesis are enclosed at the end for ready 

reference. The rest of the material is accepted for publica¬ 

tion in 
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CHAPTER - II 

TORSIONAD VIBRATIONS AND STABILITY OP LENGTHY THIN-WALLED BEAMS 

OH ELASTIC FOUNDATION - EXACT AND APPROXIMATE ANALYTICAL SOLUTIONS? 

2.1 INTRODUCTION: 

Static and dynamic'analysis of "beams on elastic foundation 

occupies a prominant place in contemporary structural mechanics. 

The vibrations and buokling of continuously supported finite and in¬ 

finite beams resting on elastic foundation has an application in 

the design of highway pavements, aircraft runways and in the use of 

metal rails for rail road tracks. A very large number of studies 

have been devoted to this subject, and valuable practical methods 

for the analysis of beams on elastic foundation have been worked 

out* 

Regarding the static analysis of beams on elastic founda- 
31 v-c 3 

tion Hatenyi’s book (43) i-s-rather-a classic ...giving the complete 

development of the beams supported on elastic foundation. A later 

development of the theory is- beautifully presented by Vlasov and 

Leovitiv V°&) in their book on **beams, plates, and shells on 

elastic foundation* * with improved models of elastic foundation. 

Since the actual response at the interface depends on the material 

of the foundation and is usually very difficult to determine, 

various foundation models were proposed to approximate the real 

foundation behavior among which Winkler’s constant modulus founda¬ 

tion is widely used because of its simplicity. A discussion of 

various foundation models u£d'presented by Kerr 

* Part of the results from this chapter were published by the 
author and A.A.Satyam in February 1975 issue of AIAA Journal, 
see Ref. ^7 • 

" 



24 

The effect of shear flexibility is included in the ana¬ 

lysis of beams on elastic foundation by Ractliffee ( ^). Biot ( /o ) 

treated the bending of an infinite beam on elastio foundation and 

Conway and Farmham ( j') ) analyzed the bending of a finite beam 

in bonded and unbonded contact with an elastic foundation. Recently 

Niyogi ( $(■ ) presented an approximate analysis of axially constrained 

beam on elastio foundation and Murthy ( $ \) solved the problem of 

buckling of continuously supported beams. The problem of buckling 

of thin-wallod beams of open seotion such as I-beams, channel sec¬ 

tions etc., with continuous elastic supports has been treated by 

Timoshenko and Gere ( 77) in their book on "Theory of elastic 

stability". By using the finite element method, Pardoen ( ) 

analyzed the buckling of thin—walled beams of open section rest¬ 

ing on continuous elastic supports subjected to an axial load. 

On the dynamics side of beams on elastic foundation, 

Kenney ) analyzed the steady state flexural vibrations of beams 

on elastic foundation for a moving load including the effect of 

viscous damping. Crandall (7 0 ) analyzed the flexural vibrations 

of a beam on elastic foundation including the effects of rotary 

inertia and shear deformation. Tseitlin (/O 2,) determined the ef¬ 

fects of shear deformation and of rotary inertia in flexural vibra¬ 

tions on beams on elastic foundation. Idoyd and Miklowitz (7,7) 

presented an analysis for the flexural wave propagation of beams 

and plates on an elastio foundation* 

While there exists a good number of investigations on 

flexural vibrations of rectangular beams or plates on elastic 

foundation, the literature on the torsional vibrations of beams on 
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elastic foundation is rather scarce. To the best of authors 

knowledge the effects of a time-invarient axial compressive load 

and of elastic foundation on the torsional frequency and buckling 

loads of thin-walled beams of open section are not being analyzed 

anywhere in the available literature. To this end, the present 

chapter deals with the exact and approximate analytical solutions 

of the effects of a time-invariant axial compressive load and of 

elastic foundation on the torsional frequency and buckling loads 

of lengthy thin-walled beams of open section. 

2.2. 33 A310 ASSUMPTIONS : 

The problem investigated in this oliaptor is restricted 

to the following assumptions• 

a) The thin-walled beam has uniform open cross sections 

along its length. 

b) Strains are assumed to remain within the elastic limit 

The curvature and twist of the beam are considered to be small. 

In particular, the deformations are small compared with the cross 

sectional dimensions of the beam in the linearized problem. 

c) The beam is fabricated from material which is homoge¬ 

neous and isotropic and which obeys Hooke’s law ( a linearly ela¬ 

stic material). 

d) The centroid and shear center of the cross section 

coincide. 

e) Shearing strains of the middle surface due to shear 

and warping effects, and axial strains of the beam due to longi¬ 

tudinal load components are considered to be negligibly small 

(the beam is undergoing inextensional motions). 
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(f) Longitudinal inertia effects are considered to be 

negligibly small. Conditions (e) and (f)are referred to as the 

Timoshenko Torsion theory. 

(g) Distortion of the cross sections in their own planes 

is not considered, however, warping of the sections is permitted. 

Distortion of the sections would be of significance for built-up 

girders or if the cross section is vsry deep or very wide. 

(h) No internal or external damping forces are Considered. 

2.3 DERIVATION OP BASIC DIFFERENTIAL EQUATION: 

As the cross sectional dimensions are assumed to be small 

compared to the length of the beam, the second order effects such 

as longitudinal inertia and shear deformation can be treated as 

negligible. 

In this section, based on Timoshenko torsion theory ( 1%')9 

the governing differential equation of free motion of a doubly sym¬ 

metric thin-walled beam on elastic foundation subjected to a time- 

invariant axial compressive load Is derived utilizing Hamilton’s 

principle. The method has the advantage of generating the natu¬ 

ral boundary conditions which shall be discussed in section 2.4. 

Hamilton’s principle (®^), states that for dynamical 

process: 

5 I1 ( I, - II 4 W ) dt = 0 

. 

where (T - U 4 W) is the Lagrangian function, T^the kinetic 

(2.1) 
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energy of the strained bar, U the total strain energy, W the 

potential energy of the external force, and tQ, t^ are two fixed 

instants* 

Pig.1.1 shows a differential element of length dz of a • 

wide-flanged I-beam undergoing torsion. According to Saint 

Venant, the cross-sections are assumed to rotate about the cen¬ 

troid-shear center '0* giving rise to a torsional couple, 

(2.2a) 

where G is the shear modulus, 0 the torsion constant for the 
s 

cross section, and 0 (z, t) the angle of twist. 

The torsion constant for an I-section is given by 

Cs = (2bt| + htJ)/3 (2.2b) 

where b is the width of the flanges, hi the height between the 

centerlines of the flanges, t^ the thickness of the flanges, and 

tw the thickness of the web. , 

The strain energy Tj^ at any instant t in the beam of 

length L due to Saint Tenant torsion is 

(2.2o) 

Accompanying the rotation is a warping of the section 

which is assumed constant in each piece of the cross section hav- 

a moment M. The x-displacement of the top flange centerline, u 

1 
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FIG 2*1 -DIFFERENTIAL ELEMENT OF A 

WIDE-FLANGED I-BEAM 
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is given by 

u = (h/2) 0 

and kenoe the moment M in the top flange is given by 

(2.2d) 

M = El EIf | -^f (2.2e) 
f 12 az2 

where E is the Young1 s modulus, 1^ the moment of inertia of 

each flange area about y-hxis. 

, It can be easily observed that the moment M in the top 

flange and -M in the bottom flange cancel so that no net moment 

M exists in the cross section* 
V 

The shear force Q due to the bending of the flanges is 

given by 

Q = 
9M = El, h 

" az3 •f 2 
(2.2f) 

The equal and opposite shear forces Q, a distance h apart in 

the top and bottom flanges, give rise to a torque due to warping, 

Tw, given by 

*w EIf t 
.. eo 

w 
3z" 

(2.2g) 

where = 1^ h^/2 is the warping constant for an I-section (32 ). 

The total torque, T^on the cross section is given by 

s w s oz 
'w 3^5 

(2.2h) 
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If Ug is the strain energy of the two flanges due to 

warping, then 

(2.2i) 

The strain energy U3 due to the Winkler type elastic 

foundation, is given by 

o 
(2.2j) 

Hence, the total strain energy U, at any instant t be¬ 

comes 

(||)2+ B0w(-^|)2+ K^O*)2 dz (2.2) 
O25 

The kinetic energy of rotation of the cross section at 

the corresponding instant is given as: 

(2.3) 

where Ip is the polar moment of inertia of the cross section and 

f the mass density of the material of the beam. 

The potential energy due to the external time-invariant 

axial compressive load, P, acting at the centroid of the cross 

section at the corresponding instant is given by 

where A is the area of the cross section. 

(2.4) 
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Substituting for T(, U and W from equations (2.2) to (2.4) 

respectively in equation (2.l), taking the variations of the in¬ 

tegrand, and integrating the first term by parts with respect to 

t and the next four terms with respect to z, one obtains: 

Z1 /{ (go - ~£) - ecJ-% - K.0 - a 
t0 0 I 8 A az2 waz4 P ats 

60 dz dt 

dt 

■ |(GV t9) ■SS - BCw j 60 dt = 0 (2.5) 

Assuming that the -values of J2f are given at the two fixed instants, 

the second integral vanishes. If the “boundary conditions are such 

that the third and the fourth integrals also vanish, then the as¬ 

sociated differential equation of motion is given by: 

<«.-3*>5-w.5-m<*•«> 

2.4 (a) NATURAL BOUNDARY CONDITIONS: 

In deriving the basic differential equation of motion (2.6) 

from (2.5) it was assumed that the expressions 

n. 

EC -^4 5(4^) w a_2 'Oz' ( 
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and 

(GO - - EO 
s A °z w qz3 

if at the two ends 

and 
PI Ari 

(GO - -2-) 
s A Oz 

= L. These oonditions are satisfied 

- 0, 

"'•ft 

(2.7) 

&
 

II O
 

(2.8) / 
Oz 

oil 

Equation (2.7) and (2.8) give the natural boundary conditions for 

the finite bar, and are satisfied if the end conditions are taken 

as 

(1) 0 = 0 and = 0 (2.9) 
dz 

These conditions imply restraint against rotation but not against 

warping* that is, the end of the bar does not rotate but is free 

to warp. This is the case of a *'Simple Support**. 

(2) 0 = 0 and •§! = 0 (2.10) 

These oonditions imply restraint not only against rotation but also 

against any warping of the end cross section. This means that the 

end of the bar is built-in rigidly so that no deformation of the 

end cross■section can take place. These conditions define a 

*'Fixed Support**. 

(3) d20 
—£ = 0 and PIn \ 90 

A nfe 
EC ■q = o 

Oz3 
(2.11) 

I 

.3 
T 
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These conditions imply no restraint of any kind at the end of the 

bar*, This requires that the bending moment in the flange ends 

and torque acting on the end cross section must be zero. These 

conditions correspond to a ''free endf'. 

(4) -g - 0 and (GCs- ^) ■§§ - EC, i?g - 0 
°z 

or equivalently 

- 0 and -^| = 0 (2.12) 
dz 3Z3 

■» The latter conditions imply no warping and zero shear 

forces in the end flanges. 

These conditions are useful for finding symmetric modes 

of vibration in simply supported, fixed-fixed and free-free beams. 

.(b) TIMS-DEPENDENT BOUNDARY 00MDITI0N3: 

The homogeneous boundary conditions discussed above, give 

the free vibrations of bars. For forced vibrations produced by 

the motion of boundaries, appropriate time dependent end conditions 

are given by prescribing at each end one member of each of the 

products: 

E04^2 6(‘^) and 

or equivalently of: 

M 6(Jj^) and 60. 

Of the many conditions thus obtained, the following are of 

more theoretical interest: 
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1. Twisting moment T^ prescribed, flange binding moment M = 0 or 

%= °* 

2. 0 or prescribed, flange bending moment M = 0 or ^ = 0, 

3. Flange bending moment M prescribed, twisting moment 

Tt= 0 or 0 = 0, 

3g0 d"0 
or *3zot" Prescribed, twisting moment T^= 0 or 0 = 0. 

In the case of semi-infinite beams, conditions need be pres¬ 

cribed at one end since all physical quantities at any instant are 

zero at the far end. 

2.5 ANALYSIS OF VARIOUS TERMS: 

i) If K^= P = o and Cw= 0, Eq.(s.6) reduces to 

GO Vi i!g = o 
3z? "S a_2 ' "p 0t2 (2-13) 

This equation represents Saint Venant’s torsion theory 

for slender beams and does not include warping of the 

cross-section shear deformation and or longitudinal iner- 

tia effects. It is given in Love ( 76) and is discussed 

by Gere (-30. 

ii) If Kj.- P = 0, Eq.(2.6) reduces to 

GO iff - EC »!g _ px i!g . 0 
's az2 “~w az3 . ' at2 

(2.14) 

This equation represents Timoshenlco's torsion theory which 

includes the effect of warping of the cross section and has 

keen treated in detail by Gere (3l). 
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(iii) If K.= 0, Eq.(2.6) reduces to 

(iv) 

(GO - 2% - EO £t- Pi fl.O 
W a_4 p at£ 

(2.15) 

This equation represents the effeot of an axial time- 
Y 

invariant compressive load added to Timosher\o1 s torsion 

theory. 

If P = 0, Eq.(2.6) reduces to 

GO - EC 
3 0z2 w 3z 

K0 - PI_ M = o 
t p dt2 

(2.16) 

This equation represents the effect of Winkler type con¬ 

stant modulus elastic foundation added to Timoshenko Tor¬ 

sion theory. 

2*6 NON-DMENSIOITALIZATION AND GENERAL SOLUTION OF EQUATION OF 

MOTION: For mathematical simplification, it is convenient to 

to reduce Eq.(2.6) to a non-dimensional form, simultaneously in¬ 

troducing some dimensionless parameters having physical interpre¬ 

tations. 

Introducing, Z = z/L, the non-dimensional "beam length, and 

x , ECW/2 
tlr! S'TTi' the ^-imensionless time variable, Eq.(2.6) in non- 

dimensionless form can be written as: 

0z 0z4 3T2 
1 

where 

2 G0 *£ 
' ^ = EC° * regidity parameter, 

w 

(2.17) 

(2.18) 
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and 

2 V 
, axial load parameter, 

w 

2 V4 3 - i foundation parameter, 
4E0 

w 

(2.19) 

(2.20) 

The general solution of Eq.(2.17) can be obtained by using 

the standard method of separation^variables. Thus, by taking 0 in, 

the form 

0 = X (Z) T (tj.) (2.21) 

and then substituting into Eq.(2.17), separating the variables* 

and setting the resulting expressions equal to ~An^> we obtain 

T = ^ 00sAn t±+ Bn sin n (2.22) 

I 

The expression for a normal mode of vibration is then 

0 = x (An. 008An tl+ Bn si21/Xn tl) (2.23) 

in which X is the normal function giving the shape of the mode 

of vibration and /\ n is the dimensionless torsional frequency 

parameter given by 

/V = 
n EC 

w 

(2.24) 

Where pn is the natural frequency of vibration in radious per 

unit of time. Any actual motion of the vibrating beam can be ob¬ 

tained by a summation of normal modes, so that in the general case 
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0 = ni. C°S V Bn SinX» tl) 
(2.25) 

in which the coefficients and Bn are found from the initial 

conditions of the vibration. 

The equation for determining the normal function X, found 

by substituting Eq.(2.24) into the differential E^.(2.17), is then 

(k2-a8)4^ + (4!s- aJ)i -0 
az^ az‘ 

(2.26) 

The general solution of this equation may be found by 

taking the normal function X in the form! 

X = dV'Z (2.27) 

which yields the auxiliary algebraic equation: 

(K2-^2)^ Uj2-/2) = o (2.28) 

The four roots of the equation are 

1 1“ + V le m - V ’/3 - + 1P1, - i^ (2.29) 

in which and are the positive, real quantities given by 

ll/2)l/2 
al = (l/f2)^- &2)+ [(K2- A2)2+ 4(A2- 4 f)]l/2j-l/2 (2.30) 

and 
j 

(l/f2)l -(K®-^®) + [(K2-A2)2+ 4(A2 - 4tf2)]l/2jl/2 

L ^ ' J J 
The general solution of Eq.(2.26) then becomes either 

v -n' ^l2 ' “ «iz V + iflLZ . _<e 7 
X = D1 e 1 + D e 1 + d! 0 1 + D e iPlZ 

(2.31) 
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or 

X = D^oosh a^Z + Dg sin ha^Z + cos P^Z + sin P1Z (2.32) 

There are four orbitrary constants in this expression whioh 

must be determined so as to satisfy the particular boundary condi¬ 

tions of the problem. For any beam there will be two boundary con¬ 

ditions at each end and these four conditions determine the frequency 

equation and the ratios of three of the constants to the fourth 

constant. Solving tha_ frAnpancv arqiat±nn_ +Jiatl da+anmj’n^ +ha, -»piinr- 

oipal frequencies of vibration. With the frequencies and normal 

functions determined, the solution is essentially complete. 

2.7 FREQUENCY EQUATIONS AND MODEL FUNCTIONS; 

In this section, frequency equations and mode shapes for 

some special oases are are established. Gere's results (3*-) are 

obtained for. the special case 0. Because of the comple¬ 

xity of the frequency equations, the discussion of the results is 

limited to the case of simply supported beam. 

BOUNDARY 0 OMIT IONS: In section (2.4a) natural boundary conditions 

were discussed. By combining these conditions in pairs, many types 

of single-span beams can be analyzed. In terms of non-dimensional 

parameters, the boundary conditions can be written as: 

1. Simple Support: 

X 

2. Fixed Support: 

= 0, dfx - o' 

az2 

ax 
az = o 

(2.33) 

x = o, (2.34) 



39 

3. Free End: 

'd!g 
dz2 

0, (K2-A2)|f-^»0 
^ dZ3 

(2.35) 

Before we proceed to derive the frequency and Normal mode 

equations for various oases, from Equations (2.30) and (£.31) we 

obtain: 

a2 = (K2- A2)' + p2 (2.36) 

and 

A*»a2p2+4-S2 (2.37) 

If in oase, the beam is not vibrating and only elastio 

torsional buckling is to be investigated the expressions for 

and from Equations (2.30) and (2.31) reduce to: 

a, - (1/V2) UK2-a2) + 

and 

—| 1/2 ) 1/2 

(K2- A2)2- 16jj2 

1/2 1 1/2 

(2.38) 

^ = (l/f2) |-(K2-/^)+ j(K2-/f)2- 16B21 " ~ ~ (2.39) 

The following frequency equations which we derive for 

various cases are also useful in finding the torsional buckling 

loads when the reduced Equations (2.38) and (2.39) are used for 
4.x, 

al ^i respectively. In this case the following relations fio 

be used: 

a2 = - 4 lZ/ P2 

and 

A“ - *2+ if - «f 

(2.40) 

(2.41) 
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2.7.1 3IMPLY SUPPORTED BP!AM ; 

■^kis is the simplest co.se which sdmits complete analyti- 

cal treatment. An example is a beam supported by framing angle 

connections at the two ends. These beams are used in building 

construction and therefore are of practical importance. 

The boundary conditions from Equations (8.33) are: 

X = d2X/dZ2 =0 at Z = 0 

and.-’ 

X = d2X/dZ2 = 0 at Z = 1 

For the conditions at Z = 0, Equation (2.38) gives: 

D3+ Dl* °* 

and D^a2 + p2) = 0. 

Since the secular determinant a2+ p2 / 0, it follows that 

Dl= V 0 » (2.42) 

From the second pair of conditions, Equation (2.32) gives: 

Dg sinh a1+ D4 sin ^ = 0, (2.43) 

and 

D2 a2 sinh a±- D4 p2 Sin = 0 (2.44) 

For a non-trivial solution, the seoular determinant must 

vanish. This gives the characterestic equation 

(a2 + sinh gin ^ 25 0 
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2 2 / 
Since r 0, and sihh ^0, we obtain the frequency equa¬ 

tion for this oaseas: 

Sin P1- 0 ( (2.45) 

From, Equation (2.45) we have, 

83 = 1,2,3,. (2.46) 

This is the frequency equation for a simply supported beam and 

by using the relations (2.36) and (2.37), we find the expression 

for the frequency parameter X as: 
'Vx 

I n2«2(n2n2 + K2-^2) + 4 9 2 \^2 (S.47) 

Sinoo sin ^=0, we find from Equation (2.43) or (2.44) that 

■Dg3 0* Hence the model function is 

X = D4 sin rniZ (2-48) 

The complete expression for the angle of twist 0 is obtained by 

summing up the normal modes, so that 

CO 

0 = J^ain nnz^ cos XnV Bn ain/v^) 

in which and Bn are determined by the initial conditions. 

Gere (^> l) studied the influence of warping parameter K, 

and concluded that it increased the frequency of vibration as 

warping increases the stiffness of the bar against rotation. For 

small values of K, which means Cw is relatively large, the effect 

of warping is considerable and must be taken into account. For 

large K, which means Cw is relatively small, the warping effect 
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is also small and may "be neglected in many cases. 

To estimate the individual influences of axial load and 

elastic foundation, Equation (2.47) can be reduced in the follow¬ 

ing manner. 

(a) If the effect of axial load alone is to be studied, by putting 

^ =» 0, we obtain 

1/2 
A-l = nrc (n2u2 + K*V ) (2.49) 

(b) If the influence of elastic foundation alone is to be investi- 
/ 

gated, by putting A « 0, we get 

_2_2 n (n2n2 + K2) + 4i 2 

1/2 

(2.60) 

(c) If the both the effects of axial load and elastic foundation 

are to be neglected, by putting A = 0 and = 0, we obtain the 

equation that was derived by Gere (3h) as: 

nx (n2u2 + K2) 
1/2 

(2.51) 

Denoting by r^ the ratio of the frequency of vibration 

with axial load alone considered, Equation (2.49), to the frequency 

with axial load also neglected, Equation (2.5l), we obtain 

A 2 

n2u2+ K2 

1/2 

(2.52) 

Similarly, denoting by r^ the ratio of the frequency of vibration 
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with elastic f.oundation alone considered, Equation (2.50), to 

the frequency with elastic foundation also neglected, Equation 

(2.51), we obtain 

/'Is. = 

A3 

4 i 
1 + 

n2rc2(n2fl2+ K2) 

i/2 

(2.53) 

To find the combined influence of axial load and elastic 

foundation, let us denote by r^ the ratio of the frequency of 

vibration with both axial load and elastic foundation considered, 

Equation (2.47), to the frequency with both axial load and elas¬ 

tic foundation neglected, we obtain 

r 
3 f* 

y* 
A 3 

4 $ 2- 2 

n2Ti2(n<’7i2-f K2) 
(2.54) 

Pig.2.2 shows the variation of r^ with A, for values of 

K =s 0.1, 1.0 and 10.0 for the first fundamental mode of vibration. 

The effect of axial load is to decrease the frequency of vibration, 

since the axial load decreases the stiffness of the bar against 

rotation. For small A , which means axial load P' is relatively0 

small, the effect of axial load is small and for large A, which 

means P is relatively large, the effect of axial load is quite 

considerable. 

Pigs.2.3 and 2.4 show the variation of r^ with i? , for 

values of K = 1 and 10 respectively, for the first three modes of 
/fci 

vibration. The effect of ^elastic foundation is to increase the 
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frequency of vibration, as the elastic foundation increases the 

stiffness of the bar against rotation. For small ^, which means 

foundation modulus is relatively small, the effect of elastic 

foundation is small and for large ^ , which means K^. is relatively 

large, the effeot of elastic foundation is quite considerable* 

Figs.2.5 and 2.6 show the variation of r^ with A and ^ , 

for values of IC = 1 and 10, for the first fundamental mode of 

vibration. The combined effect of axial load and elastic founda- 
» 

tion is the algebraic sum of individual influences which are ac¬ 

tually opposite in nature. For a value of = 0.25 n2 n2, 

the combined influence of the axial compressive load and elastic 

foundation on the torsional frequency becomes zero. It can also 

be noticed from Equation (2.53) that the influence of elastic 

foundation decreases for higher modes of vibration. 

When the beam is not vibrating, ie., A = 0, we obtain 

from Equation (2.47), the expression for torsional buckling load 

(n=l) as, 

A lT = ti8+ 1^+ (4/7t2)32 (2.55) 

To show the Influence of olastio foundation on the tor-w 

sional buckling load, let us define by r^, the ratio of the buck¬ 

ling load when elastic foundation is considered, to the buckling 

load when elastic foundation is neglected. 

4 y ^ 
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From the above Eq.(2.56) and Fig.2*7,which shows the varia¬ 

tion of r4 with for values of K = 0.1, 1.0 and 10.0, it can be 

' observed that in the case of torsional buckling also the effect of 

elastio foundation is to increase the buckling load, as the ela¬ 

stic foundation increases the stiffness of the member against 

rotation. The influence of the warping parameter K is also to in¬ 

crease the buckling load. But relatively, the effect of warping 

parameter is more pronounced than that of elastic foundation. 

2.7.2 FIXED-FIXED BEAM: 

In the case of a beam which is built-in rigidly at both 

ends, the boundary conditions ares 

at 0 = 0 

at Z = 1 

Applying the boundary conditions to the general solutions, 

Eq.(2.32), frequency equation can be obtained as, 

and 

y _ dX 
* dZ 

X = £X - 0 
X dZ “ 0 

(a^- p^) 
2-2 cosh a. cos ft. + —--— sinh a, sin ft. = 0 

alPl 

(2.57) 

The modal function then becomes, 

X = D1(oosh a1Z + P1r)1sinh a±Z - cos ^in f^z) 

where 

fvj m cos cosh a1 P^sin P^+ o^sinh 

1 1= \einn alSin ^ = ^"(oob P*- oosh a±] 

(2.58) 

(2.59) 
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2*7-3- m FIXED AT ONE EHD AM) fl IMPLY SUPPORTS AT THE OTHER 

With the end Z = 0, taken as the simply supported end, 

and the end Z = i as the built-in end, the boundary conditions 

are: 

X ■ = 0 at Z = 0, 
dZ2 ’ 

and 

X = ff =0 at 2 - 1. 

The frequency equation in this case becomes 

^1 tanh a^- tan 
*L 

= 0 
(2.60) 

The modal funotion then is 

X « Dg(sinh o^Z - Is sin ^z) 
(2.61) 

where 

>Y1 sinh 
ai cosh 

2 sin 
Pi cos 0 (2.62) 

2.7,4. CANTILEVER BEAM WTTE : WARPING RESTRAINED: 

For a cantilever beam built-in rigidly at the end Z=0 

so that warping i8 completely prevented, and with a free end Z 

at Z * l, the boundary conditions are: 

Y ^ dX n 
/ ^ ~ cl2 3 ^ at 2 = 0 

and 

X. l. - ■ * 
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^ ='(K2-A.2)M_^X o at Z “ 1 
dZ^ dZ6 

The frequency equation for this "beam can "be obtained as* 

_,4 , p4 2 q2 
8* + P* *"* Pi _ / V 

2 + —g—g® cosh cos ?1+-^ einh sin P^ = 0 (2.63) 
ft* 

ai pi «i ?! 

The modal function then becomes, 

X = D^Ccosh a1Z+ P^jSinh a±Z - cos PjZ - a^ain ^z) (2.64) 

where 

nr] 
a1 sin P^- sinh 

ft-:' 

| ' 

1 ^ a® con P^+ P2 ooo a.^ 

p ? 
P^ cos P^ + cosh 

al^l^lsin aisinl1 ai 

2.7.5. CANTILEVER BEAM WITH UNRESTRAINED WARPING-: 

(2.65) 

In the previous case, a cantilever beam was considered in 

which the supported end was fixed and offered complete restraint 

against warping. A cantilever beam may also be supported in a 

^ manner such that warping is free to occur at the supported end. 

An example is a cantilever beam supported by the ordinary fram¬ 

ing angles and moment resistant connections used in building con¬ 

struction. With regard to torsion, such a support offers restraint 

against rotation but not warping and hence is a simple support. 

It is, of course, a fixed support with regard to bending. 

, . Thus, for a cantilever simply supported at one end and 

free at the other, the boundary conditions are: 

•j 
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and 

x = = 0 at Z = 0 
dZ* 

- (k2-^)B _£|,o at2=1 
az* dZ az3 

■ :r--% 

';*v 
<i ;■ 

Applying the above boundary conditions, the frequency equation can 

be obtained as, 

a® tanh a^- f^tan ^ “ 0 

The modal function in this case becomes, 

X = Dg(sinh o^Z + 14 sin ^z) 

where 

'A _ “^sinh P^cosh 

4= = " 
P^sin o^cos ^ 

2.7.6. BEAM WITH FREE ENDS: 

In the case of a beam which is free at both ends, the 

boundary conditions are: 

(2.66) 

(2.67) 

(2.68) 

43 - (1*-A8) « - 4^ ' . o 
dZ dz " az3 

at Z = 0 

and 

£JC a fjr2 a2\ dX d^X n da2 (ir- A-) ja - -3 - o «t a - i 

frequency equation for this case becomes, 

‘ ' • P6- a6 
2 - 2 cosh Vos P1+ -£~j£ sinh ^ sin Pi = 0 

(2.69) 

- *4 
/ 

t . 

mmmmrnM 

■. ' I 
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The modal function tliorefor© booomoo 

X = 3)^ (cosh ct^Z + ^gsinh a^Z + (a^/P^)2 cos ft^Z 

+ (PiAj) (0 oi.n P^55) 

• where 

^ a^(cos Pj_- cosh o^) P^sirih. a^+ sin P^ 

, 6 cc^sinh aj- P^sin P) P^(cos ^- cosh a1) 

2.8. RESULTS AKD DISCUSS ION: 

(2.70) 

(2.71) 

The frequency equations derived in this section for vari¬ 

ous combinations of boundary conditions are highly transcendental 

in nature and can be solved only by lengthy trial-and-error proce¬ 

dure. Ao is stated earlier the same frequency equations can be 

used to obtain the Elastic Torsional Buckling loads for various 

end condition but with the only difference that for and P^, 

Equations (2.38) and (2.39) are to be used in conjunction with 

Equations (2.40), (2.4l) and the corresponding frequency Equation. 
i 

A computer program has been written in Fortran IV for solution of 

the above Frequency equations on IJBM-1130 computer at the Computer 

Center, Andhra University, Waltair. Typical results for simply 

supported, fixed-fixed beam and beam fixed at one end and simply 

supported at the other for the fundamental mode (n=l) for values 

of K=1 and 10 are presented in Figs. 2.8 to 2.1§ showing the 

combined influence of axial load (A) and Elastic foundation (^). 

The individual influences also can be easily observed from these 

graphs. Figs A* $ and Lhow the variation of the fundamental tor- 

sional frequency parameter A^(n=l), for a simply supported beam, 
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with various values of load parameter i\ and foundation parameter 

f for values of K ■ 1 and 10 respectively. Figs.8.10 and 2.11 

show the results for fixed-fixed beam and, the reunite oorroopon- 

ding to a beam fixed at one end and simply supported at the other 

are shown in Figs,2.12 and 2.13. 

It can be observed from these graphs that the values of 

the critical buckling loads for various values of ^ can be ob¬ 

tained from'the graphs for /\ = 0 ie., from the axis on which 
r“«Y 

is taken. Wh«n=the axial load is-not-existing the values of the 

frequency parameter A can be obtained from these graphs forA = 0 

ie., from the vertical axis on which iN is plotted for various ‘ 

' values of • ^e combined influence of the foundation parameter 

i and the load parameter /\ can be observed from the graphs to 

be due to the interaction between the individual influences on 

the frequency of vibration, which are interestingly opposite in 

nature. Independently as the load parameter increases the fre¬ 

quency parameter decreases to zero. In the absence of axial load, 

the frequency increases for increasing values of $ . It can be 

therefore concluded that the combined influence of foundation 

and load parameters is the algebraic sura of the individual influ¬ 

ences on the frequency of vibration. 

2*9, APPROXIMATE SOLUTIONS BY GALERKIN'S TECHNIQUE: -> 

Except for the simply-supported beam, the frequency 

equations for other boundary conditions derived in the above 

sections (2.7) and (2.8) can be observed to be highly transcendental 
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and are solved on a digital computer only by lengthy-trial and 

error method. An attempt has been made in this section to derive 

approximate expressions for the torsional frequencies of fixed 

end beam and of a beam fixed at one end and simply supported at 

the other, utilizing the well known Galerkin’e technique( 77)• 

2.9.1, FIXED END BEAM: 

The boundary conditions for a beam fixed at both ends, 

Z=1 are given by 

dX 

and 

x = tt =0 at 2 = 0 

X = || = 0 at Z = 1 

To satisfy the above boundary conditions, the normal fun¬ 

ction X in this case can be assumed in the form 

X = 2 B (l- cos 2n7t z) 
n=l n (2.72), 

Substituting Equation (.2.72) in the differential equa¬ 

tion (2.26), orthagonalizing the resulting error with the assumed 

function given by Equation (2.72) and integrating the obtained 

expression over the whole length of the beam, the expression for 

the frequency parameter \ can be obtained as, 

X = (n2Jt2/3)(4n2n2+ K2-Y2)+42 
11/2 

(2.73) 

In arriving Equation (2.73), only one term of the infi¬ 

nite series of Equation (2.72) is utilized. Hence, Equation(2.73) 
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gives an upper bound for the natural frequency parameter 

By putting A= 0, and n = 1, in Equation (2.73) the ex¬ 

pression for the buckling load parameterA^rt for the fixed end 

beam can be obtained as 

A or = 4tc2+ K^+te/n2) iZ (2.74) 

2.9.2. BEAM FIXED AT ONE END AMD SIMPLY SUPPORTED AT THE OTHER: 

The boundary conditions in this case are: 

X = j§ = 0 at Z = 0 

and 
2 

X - £-2 a o at Z = 1 
az^ 

The normal function satisfying the above boundary condi¬ 

tions can be assumed in the form 

X = S 0 (cos ^ Z - cos 232 z) (2.75) 
n=l a A a 

Substituting Equation (2.75) in the differential Equa¬ 

tion (2.26),orthagonalizing the resulting error with the assumed 

function given by Equation (2.75) and integrating the obtained 

expression over the whole length of the beam, the equation for 

the frequency parameter X can be obtained as, 

A = 11 :S5 n2u2(2.05 n2n2+ K2-^2)+ 4121]1/2 (2.76) 

Equation (2.76) also gives an upper bound for the natural torsional 

frequency parameter as only one term of the infinite series of 
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Equation (2.75) is utilized in obtaining the solution. 

By putting X = 0 and n = 1, in Equation (2.76), the ex¬ 

pression for the buckling load parameterfor the "beam fixed 

at one end and simply supported at the other can be obtained as 

A or = 2,05 "2+ k2+ (s*2/"2)^2 (2.77) 

Tables 2.1 and 2.2 show the comparison between the exact 

results (obtained by digital computer) and the approximate results 

(obtained by Galerkin^ technique) of the frequency parameter 

for the first mode of vibration (n=l) of, fixed end beam and a 

beam fixed at one end and simply supported at the other respectively. 

The agreement between the results is quite good. 

2.9.3. LIMITTING CONDITIONS: 

The limiting conditions at which the combined influence 

of the axial compressive load and elastic foundation on the tor¬ 

sional frequency becomes zero, for some cases are as follows; 

1) Simply-Supported Beam: From Equation (2.47) the limit- 

ting condition in this case becomes, 

'J =0.5nitA (2.78) 

2) Fixed-End Beam: From Equation (2.73) the limiting 

condition in this case is 

V = 0.574 nit A (2.79) 
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3 ^ at one end and Simply Supported at the other: 

ffrom Equation (e.7G) the limlt^ing condition for this oaoo can bo 

obtained aa 

'i = 0.559 iota.. (2.80) 

For the above relations in various oases between 9 and A , 

it is really interesting to note that there will be no influence 

of these two effeots on the torsional frequency of vibration. 

This is because of the opposite nature of their individual effects 

and these individual effects get nullified at these limiting 

conditions for various oases. 

2.10. REMARKS: 

It must be recalled here that the analysis presented in 

this chapter neglects the effects of longitudinal inertia and 

shear deformation which are of importance if the effects of cross 

sectional dimensions on frequencies of vibration are desired. 

Hence, this analysis is valid for lengthy beams, ie., for beams 

whose cross sectional dimensions are quite small compared to the 

length. These second order effects such as longitudinal inertia 

and shear deformation, therefore, profoundly influence, the fre- 

quencies of torsional vibration at higher modes and the propaga¬ 

tion of short wave length waves. These effects are taken into 

consideration in the analyses presented in the ^omifa^chaptars. 
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jfflARCER..- IXI 

EIWITS ELEMENT ANALYSIS OF TORSIONAL VIBRATIONS AMD STABILITY 

OF LENGTHY THIN-WALLED BEAMS ON ELASTIC FOUNDATION* 

3.1. INTRODUCTION: 

In Chapter II the title problem is fully analyzed from a 

purely mathematical approach. This approach provided us with 

exact solutions for the problem. One short-ooming of such an 

approaoh is that duo to the oomplex nature of the equation of 

motion such mathematical difficulties as non-uniform members, 

oomplex loadings, or arbitrary boundary conditions can not be 

easily handled. 

To complement the exact solutions given in the previous 

Chapter, this Chapter intends to provide a means of obtaining ap¬ 

proximate solutions to our present problem. The technique used 

to obtain the approximate results is the method of ''finite'' or 

''discrete'' elements. Basically, the finite element method is 

an extension of the well known Rayleigh-Ritz method in which as¬ 

sumed displacement patterns are specified for an entire structure 

In the finite element technique, the continuous system is repla¬ 

ced by a substitute system consisting of a number of finite ele¬ 

ments linked together. Once the properties: stiffness, mass and 

Part of the results from this Chapter were published by the 
author, B.V.R.Gupta and D.L.N.Rao in the Proceedings of the 
international Conference on Finite Element Methods in Engi¬ 
neering, held at Coimbatore Institute of Technology, Coimba¬ 
tore, India, during 6-7 December 1974. See Ref.(4g). 



70 

loading of the individual elements have been defined, the equi¬ 

librium of the substitute system can be described by a large 

number of equations, readily solvable on a digital oomputer. 

Many of the early advances in the finite element method 

were presented in technical Journals, but recently two texts have 

appeared that summarized this modem technique (93,//S'). These 

texts cover such varied topics as plane stress, plane strain, 

axisymmetric stress analysis, three-dimensional stress analysis, 

bending of beams and structural stability. To date the finite 

element method has been used to predict the buckling loads of 

trusses, beams, plates and shells. In applying the finite element 

method to these problems in elastic stability it has become neces¬ 

sary to derive the so-called '' Initial stress'* or ’’stability co¬ 

efficient" matrices that account for the in-plane stresses due 

to in^plane loads. 

For problems involving large displacements the stability 

coefficient matrix has been termed as the "geometric stiffness" 

matrix since it accounts for the influence of large displacements 

on the equations of equilibrium. Using the conventional elastic 

stiffness matrix that accounts for the elastic bending stresses, 

the stability coefficient matrix for small displacements, and 

the mass matrix that accounts for the inertial loads, a matrix 

eigenvalue problem is established from which the natural frequen¬ 

cies, critical loads and mode shapes can be determined. 

Many investigators used the above technique to predict 

the buckling loads of trusses ( 9*? ), beams ( 6&)} plates and 
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shells (6^)8$. Very recently, Pardoen ( ^0 ) analyzed static and 

dynamic buckling of thin-walled columns using finite elements 

and, Barsoum ( 6 ) presented a finite element formulation for 

the general stability analysis of thin-walled members. The me¬ 

thod has yet to be extended to the analysis of torsional vibra¬ 

tions and stability of lengthy and short thin-walled beams of 

open seotion resting on continuous winkler type elastic founda¬ 

tion. 

Thus, a primary objective of this Chapter is to develop,, 

for a lengthy thin-walled boom resting on Winkler type elastic 

foundation and subjected to an axial time-invariant compressive 

load, the appropriate stiffness, stability coefficient and, mass 

matrices necessary for a discrete element torsional vibration 

and stability analysis. Further, to establish the reliability 

of the method, the approximate finite element results will be 

oompared with the exact solutions obtained Chapter II* 

3.2. FINITE ELEMENT CONCEPT: 

The use of finite elements to solve complex problems in 

structural mechanics has been well documented ("O. The method 

has gained acceptance not only because of its versatility in 

handling complex structural problems, but also because of the 

highly systematic manner in which the problem is formulated and 

subsequently solved. Essentially, the finite element method con¬ 

sists of replacing tte actual continuum by a mathematical model 

composed of structural elements of finite size having known ela- 
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stio and inertial propertieg. These structural elements serve 

as building blocks of the system whioh, when assembled, provide 

approximations to tho static and dynamic propertieg of the ac¬ 

tual system. 

The basic approach in analyzing a thin-walled beam as 

a net work of discrete elements can be summarized in four 

steps ( 2.6) as follows: 

(1) The continuum must be separated by a series of lines or 

surfaces into a number of 11 finite elements*1. For a prismatic 

thin-walled member such as a thin-walled beam, each finite ele¬ 

ment is represented by a longitudinal segment of the whole beam. 

(2) All elements are assumed to be interconnected at a dis¬ 

crete number of boundaries to atleast one adjacent finite element. 

At each of the connection boundaries a nodal point is designated. 

For a thin-walled beam the nodal point at the connection boundary 

is the shear center with generalized displacements such as trans¬ 

lations or rotations at this point comprising the basic unknowns 

of the problem. 

(3) The most important step in formulating the finite ele¬ 

ment procedure is choosing a function or functions to define 

uniquely the state of displacements within each finite element 

in terms of its nodal displacements. 

(4) Finally, once the displacement function has been deter¬ 

mined for the element in terms of nodal displacements, the strain 



otota within each ©lament oan readily bo found. Typioally, for 

elastic materials, a differential relationship exists between 

the displacement and strain states. The strains, together with 

the appropriate constitutive relation, establish the stress state 

within the element, the strain energy, potential energy and 

kinetic energy can be expressed in terms of its generalized no¬ 

dal displacements. 

3.3. iimonr for vibrationi 

The finite element formulation of the general structu¬ 

ral dynamic response problem results in the Equation (z6 ) 

MR+KR-SR=F (3.1) 

In Eq.(3.l), K is the * ’total stiffness matrix* * in which the 

coefficients gives the generalized force developed at point 

i as the result of unit generalized displacement R^= 1 imposed 

on point j, all other points being restrained to zero displace¬ 

ment. The coefficient of the "total stability coefficient 

matrix** S represents the external load at coordinate i which 

results in a generalized displacement R^= 1 at point j. The co¬ 

efficient of the "total mass matrix** M represents the mass 

inertia load at point i developed by a unit acceleration R^= 1 

at point j. The matrices R, R and F are the generalized displa¬ 

cements, accelerations, and loads respectively. 

In the finite element deformation method, the deforma¬ 

tions of the structure are assumed to be a function of the gene- 
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mvm bommrn «f &wu*»t *«*lmm* ^ 

elements, and satisfy the displacement boundary conditions, but 

they need not satisfy the Oauohy equilibrium equations. 

Using the general procedure of the finite element method, 

the total structure is derided into a number of elements. These 

elements are connected at their corner or nodal points. Consi¬ 

dering a typical three-dimensional element IT, the displacements 

are given by 

u (x, y, z, t) = A (x, y, z) R^t) (3.2) 

where the elements of u are components of the displacement vector, 

A is a matrix whose elements are functions of the coordinates x, 

7, and z, and the elements of RN are the generalized coordinates 

for the IT th element with time-invariant magnitudes. The strains 

are given in terms of nodal displacements using the strain-dis¬ 

placement relation. 
« 

Thus, 

6 (x,y,z,t) =» C (x,y,z) Rjf(t) (3<3) 

where C is a matrix giving the strains in terms of the generali¬ 

zed displacements R^. Using the stress-strain relation, the 

strain energy can be obtained. 

•Thus, 

cr (x,y,z,t) =D (x,y,z) e (s,y,z,t) , (3.4) 

• ,'vm] 
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where gr ia a matrix of stresses, and the D matrix consists of 

appropriate material constants, 

The strain energy U is then given by 

u “ i f eTa= dv (3.5) 
a V 

m 
where 3 represents the transpose of the strain matrix B and v 

is the volume of the beam. 

Substituting Eqs.(3.3) and (3.4) in Eq.(3.5), the strain 

energy expression becomes, 

u - | / Rj 5 0 Rn dv = | Rn ^ (3.6) 

where 

K* » / S1 D C dT , (3.7) 
V 

and is called stiffness matrix for the N th element. Similarly 

the potential energy can also be written in terms of the genera¬ 

lized coordinates and the stability coefficient matrix 3^ for the 

N th element can be obtained. 

The kinetic energy T is given by 

I = \ /p5T U dv 
A V 

Substituting Eq.(3.2) into Eq.(3.8) we obtain, 

where 

a A dv. 
v 

(3.8) 

(3.9) 

(3.10) 



76 

and is ofelled the mass matrix for the Nth element. The stiff¬ 

ness , stability coefficient and mass matrices for the complete' 

connected structure is obtained by addition of th© component 

matrices. A given column of the matrix consists of a list of 

generalized forces at each of the nodes for unit generalized 

displacement of a given node. When two or more elements have a 

common node, forces are simply added. Thus if R is the final 

stiffness matrix for the whole structure, the elements of R are 

built as 

Eij " 1 N = 1»2***’ (3.1l) 

and similarly 

= Z <SipH * N = (3.12) 
. • \ 

= 2 Oid)N » N = 1,2,... (3.13) 

Assuming that the displacements undergo harmonic oscilla¬ 

tion, then the displacement vector can be written as 

Rjf(t) = rN eipn* 7 (3.14) 

where r^ is a column vector of amplitudes of the generalized dis¬ 

placements R^ and pn is the circular frequency of oscillation. 

Substituting Eq.(3.14) into Eq.(3.l) gives: 

r*-n [r„i= P*r*i [%] 0-15) 

Eq.(3.15) represents an algebraic eigenvalue problem. In 

this finite element method, the matrices £ R ],[§]and[fljwill be 
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usually symmetric). If the matrioes are both symmetric and posi- 

P 
tive definite, all eigenvalues Pn, will be real, positive numbers 

Moreover, the eigen vectors of symmetric matrices are in¬ 

dependent; therefore, the matrix Q r^ is nonsingular. Another 

useful property of symmetric matrices is that if the eigenvectors 

are normalized in such a way that 

of the modal matrix is equal to the transpose, that is the modal 

matrix is orthogonal. 

The eigenvalue problem for large systems can be solved 

by numerical schemes that are either direct or iterative. The 

direot methods are more general and are commonly employed, al¬ 

though the iterative shceraes are suitable for computations when 

only one: or a few of the eigenvalues and their corresponding eigen 

vectors are needed. Among the various direct approaches to be 

found in literature are the Jacobi, Givens, Householder and Q R 

method. Among the iterative techniques are the power or Stodola- 

Vianello method and inverse iteration. A discussion of these 

various methods is given in Ref.( rU ). In the present work, 

Jacobi^ method is utilized in solving the eigenvalue problems. 

g .4a,* FUNCTIONAL REPRESENTATION OF ANGLE OF TWIST: 

In the past the use of polynomials as displacement fun¬ 

ctions has been popular for describing the displacement within 

each finite element in terms of its nodal displacements. For 

the present, to describe the twisting behavior of the thin-walled 

- • I 
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beam a cubic polynomial is assumed to approximate the angle of 

twist within each finite element. The motivation for choosing 

a oublo polynomial is that the contribution to the strain energy 

due to warping (See Eq.2.2) involves a second derivative of the 

angle of twist. Choosing a cubic polynomial assures that there 

will be a non-zero contribution from the warping term whereas 

if the angle of twist only varied linearly there could be no con¬ 

tribution from the warping term as Jn this ouso the second deri¬ 

vative vanishes. 

For each finite element of a lengthy thin-walled beam in 

torsion, there are two generalized nodal displacements at the j 

end of the ith member. These nodal displacements are! 

0j = angle of twist at the shear center about the 

longitudinal z-axis; 

0^ = rate of change of angle of twist at the shear 

oenter about z-axis; 

where the subscript j denotes the generalized displacement at the 

j end of the ith finite element. Similar generalized nodal dis¬ 

placements exist at the K end of the element. The prime denotes 

differentiation with respect to z. 

If the twist within each finite element is assumed to 

vary cubicly the displacement function takes the form: 

0(z) = a + bz + cz^+ dz^ (3.16) 

To establish a relationship between the displacements 

at any interior coordinate z in terms of the generalized nodal 
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coordinates, the four arbitrary constants in the assumed dis¬ 

placement function must be determined. For instance, the con¬ 

stants a, b, c and d can be determined from the four simultane¬ 

ous equations given as follows: 

i 

0(0) = = a 

M(o) a i?i a b 
dz dz 

0(1) “ 0K= a+bl+0l8+dl3 

i^(l) = = b4£cl+3dl2 
dz dz 

(3.17) 

(3*18) 

(3.19) 

(3.20) 

where 1 is the length of the element which is some fraction of the 

total beam length L. 

Once the four coefficients have been determined, the angle 

of twist at any coordinate z within the element in terms of the 

four nodal displacements $y 90^/dz, 0^ and d0^/dz is uniquely 

defined, as follows? 

0(a) « (l-3^f+ 2 £,3), (z-2^,z + ^,2z), (3^-2£?), (-£z+^z) 

(3.21) 

where =* z/l is the dimensionless length of the element of the 

beam. 

Eq.(3.6) can be written in an ahtfeviated form as? 
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(3.22) 0(z) = 1(a) SH(t) 

where 

A(z) = [(l-3^+2£?), (z-2^z+^z),(3jff-2£?),(^z+^z)] (3.23) 

and 

RN = L > &K * 3 (3.24) 

Similar matrix relations exist for the first and second 

derivatives of ff which can be written as: 

0'(z) = (A(z) Bjjtt) )' = \(z) fijj(t) 

0"(z) = (A (z) Rjj(t) )'= Ag(z) Rjj(t) 

(3.25) 

(3.26) 

where 

A1(z)= 

_ 2 2 2 z z ^ z z z z 

+ 6 Js’-d-4 I4® p)-<6 -2- 6 I * 3 ^2> 

(3.27) 

Vz) = (- V 12 —g), (- — + 6 —?>),( ^2 ” 12-g),(- 1 + 
1* l6 1 ld ld IT 1 1* 

(3.28) 

The generalized velocity and accelerations can also be 

expressed in terras of the discretized nodal velocities and acce¬ 

lerations. That is: 

and 

ft(z) = A(z) f?N(t) 

0(z) = A(z) SN(t) 

(3.29) 

(3.30) 

where dots denote differentiation with respect to time t. 
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3.4lr.FORMULATION OF ELEMENT MATRICES: 

Tho expreoBione for tho kinetic energy T, e train energy 

U and potential energy W, derived in Chapter II (See Eqs.2.3, 

(8.8) and (8.4) respectively) for an element of finite length 1 

can he written as follows: 

i 1 .2 

t = | /eip(0) dZ 

n = |/ 
* 0 

ECw(0'’)2+ GOS(0')2+ Kt(0)2 dz 

and 

W » | } W' )S dz 
4 o A 

(3.31) 

(3.32) 

(3.33) 

From Hamilton's principle (See Eq.(2.l) ) we have: 

61 m (T-U4W) dt = 0 (3.34) 

Direct substitution of Eqs.(3.22), (3.25), (3.26), (3.29) 

and (3.30) into the energy expressions (3.3l), (3.32) and (3.33) 

yields (for the Nth element): 

6h " 51® j-T^ ^n I 

\ -T1 —T «. ' GO 1 m m 

2 {. % A2 A2 % dz + “2s ? ^1 ^N dz 

♦'£}if i* j^ iz dt = 0 (3.35) 
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Eq.(3.35) can be also written more concisely as: 

tf 

SV 5 ? I (('IpL)RiN mfJ R1n - fECw/L'5)R1N icN RlfJ 
3%?rT 

* .< Vja) 5* *ix dt - 0 (3.36) 

In Eq. (3.36) the terms ( PlpLjSjj, (EO^/L®)]^ and 

(PIp/AL)aN Aenote respectively the mass matrix the etiffnoea 

matrix Ejj and the stability coefficient matrix §N of the Nth ele- 

m- N 
1 1 

420H4 

k, N 

30N2 

N» kN’ SN and are given 

” 15611s 

22N 4 Sym. 

54N2 13N 1561I2 

_-13N -3 -22N 4 

12N2 
- 

6N 4 Sym. 

-12N2 ■ -6N 12N2 

6N 2 -6N 4 _ 

" 36N2 - 

3N 4 Sym. 

-3QN2 -SN 59U2 

3N -1 -3N 4 

(3.37) 

. 
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9« 

156H2 

22N 4 
3ym. 

100K4 B4N2 13tf 1B6«2 

-13N -3 ~22N 4 

l 

36N2 

3N 4 
Sym. 

30N2 -36 N2 -5K 36N2 

3M -t -3N 4 

If “ f 9j2fj/9Z, 0K. L ajzfK/ez I 

(3.38) 

(3.39) 

(3.40) 

where N denotes the number of the elements and Z « z/L is the 

dimengionleBB length of the total beam. 

The equations of motion for the discretized system can 

now be obtained by using Eq.(3.36). Talcing the variation of the 

integral expression of Eq.(3.36) we obtain: 

> [f IpiS*H 5„ - <«>,/»»>**, £„ g,. 

+ (PIp/Al) 5^1N aN dt a 0 (3.41) 

whioh after integration by parts over the time interval gives: 

- f ®?N 'V 5A»+te°yi5,EAir<pVAI,)»ii Sin 
1 L- _ 

dt a 0 

(3.42) 
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The first term in Eq.(3.42) is seen to vanish in view 

of the assumptions made previously that the virtual displacements 

displacement oan be arbitrary for other times then the only way 

in which the integral expression in Eq.(3.42) can vanish is for 

the terms within the brackets to equal zero. Therefore, the 

governing dynamic equilibrium equations for the discretized sys¬ 

tem are: 

eV 5n Sin" <E(Vl3) £n *ur (PIP/AL) sn «in - o 0.43) 

Assuming that the displacements undergo harmonic oscil¬ 

lation, then the displacement vector can he written ass 

^1N = rN 6 (3.44) 

where rN is a column vector of torsional amplitudes of the gene¬ 

ral torsional displacements and pn is the circular frequency 

of torsional oscillation. Substituting Eq.(3.44) into Eq.(3.43) 

gives: 

(3.45) 

[ Ejj- A2 [rN] = ^ [mN] [fN] (3.46) 

where^2 andj\2 are respectively the buckling load and frequency 

1 
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parameters given by: 

and 

(3.47) 

I 

(3.48) 

Eq.(3.46) represents the equations of motion for an undamped 

freely oscillating system. 

v For a beam which is stationary (not vibrating), A = 0 

and Eq*(3.46) reduoes to: 

Pul [?ul a CaNl lrN] (3.49) 

Eq.(3.49) represents the equations of motion for the torsional 

buckling of a beam resting on continuous elastic foundation. 

EQUATIONS OF EQUILIBRIUM FOR THE TOTALLY ASSEMBLED BEAM: 

As previously mentioned, the matrices 3^, HN and 

pertain only to the Nth finite element and are thus denoted as 

the element matrices. To obtain the total strain energy, poten¬ 

tial energy and Kinetic energy of the beam as an assemblage of 

N finite elements, the standard finite element procedure is emp¬ 

loyed. The procedure consists of summing the contributions of 

each element to form overall stiffness, stability coefficient, 

mass and displacement matrices which reflect the total energy of 

the entire beam. 

\ 
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The variation of total energy 61 for a thin-walled beam 

consisting of N finite elements is 

61 
IT _ N , + 

= Z 6lw= Ei/2 
N=4 N N=1 2 t„ 

1 L. 

mN S1N 

(ECW/L3)®1N Jcjj. ^1N+ (PIp/AL)^N sN 51N T _ 
dt = 0 (3.50) 

After summation and integration by parte over the time 

interval Eq.(3.50) becomes: 

ey 5 % 

-/ 
2 t*1 

(>IpL 5 V (EOyi3)^ (PIp/ALjs dt = 0 

(3.51) 

Prom Eq.(3.5l) the equations of equilibrium for the totally 

assembled beam can be written as: 

[E-A2s][r]=;\2fm]|[r] (3.52) 

whore K, a, m and r denote tho totally assembled matrioea corres¬ 

ponding to the element matrices IcN, sN, mH and rN defined previ¬ 

ously. With the two generalized displacements possible at each 

node and, with the bar segmented into N elements, the number of 

degrees of freedom is 2 (N+l). 

For a beam which is stationary and not vibrating, “ 0 

and Eq.(3.52) beoomes: 
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[£] *^8 m [rj (3.63) 

The formulation of the above matrix equilibrium equa¬ 

tions for the totally assembled beam, Eqs.(3.62) ^ (3.53) ln- 

olude all possible degrees of freedom, both free and restrained. 

The displacement vector r of this overall joint equilibrium 

equations is comprised of both degrees of freedom, the unknowns 

of the problems and known support displacements or boundary con¬ 
ditions. 

3*6* BOUffDABY qqndpptotto . 

It should be recalled here that for the preseat finite 

element formulation, only tm generalised dleplao.ments are oon- 

sldered at each node. Hence, to modify the total stiffness, mass 

end stability coefficient matrices for various combination, of 

end supports the following boundary conditions are to be utlll- 
zed) 

(a) for a • - simply supported end", the end of the bar 

does not rotate but is free to warp and Hence, 
j2fo° ■ 

(3.64) 

(b) for a '-damped end", the end of the bar 1, built- 

in rigidly so that no deformation of the end oroee 

aeotion oan take plaoe and we have, 

* ■ ° “* *'■<>' (3.55) 

(o) for a "free end" the total matrices are to b. u,.d 

without any modification. 
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3.7. METHOD OF SOLUTION: 

A general computer program is written in Fortran IV to 

suit the IBM 1130 Computer at the Computer Center, Andhra Uni¬ 

versity, Waltair, in order to obtain the.eigenvalues i.e., 

frequency parameter And buckling load parameter^ for various 

values of the foundation parameter i , and their associated 

eigen vectors for various end conditions. 

lhe steps Involved in the computation program are as 

follows J 

1- TO road in the element properties, number of elements H, 

and boundary conditions. 

2: To form element stiffness, stability coefficient and 

mass matrices. 

3. To assemble the total stiffness, stability coefficient 

and mass matrices. 

To modify the total matrices according to the specified 

Boundary conditions. 

5- To solve the eigenvalue problem utilizing Jacobi's method. 

To print the given element properties, boundary conditions, 

number of elements, eigenvalues and their associated eigen- 

vectors. 
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,8.8. RESULTS AMD COSCLUSIOHS: 

The values of for the first five frequencies of tor¬ 

sional vibration of simply-supported beam, obtained for a divi¬ 

sion of the beam into N - 2,4 and 6 segments for values of 

Warping parameter K = 1 and 10, and for values of foundation 

parameter^ = 2,4,6,8,10 and 12 are shown in Tables 3.1 and 3.2 

respeotively, whioh oan be observed to compare well with the 

exact results obtained in Chapter II. The values of >s for the 

first five torsional frequencies of simply supported beam, for 

a division of the beam into N = 6 segments, for values of warp¬ 

ing parameter K « 0.01 and 0.1, for various values of V = 2,4, 

6,8,10 and 12 are presented in Tables 3.3 and 3.4 respectively 

and have compared well with the exact ones. 

In Tables 3.5 and 3.6 the results for free-free and fixed- 

fixed beams are presented respectively for a division of the 

beam into N » 6 segments for values of K = 0.01, 0.1, 1.0 and 

10 for various values of V = 2,4,6,8,10 and 12. Prom the re¬ 

sults presented in Tables 3.1 to 3.6, it can be observed that 

the frequency parameter A ® increases for increasing values of 

the foundation parameter ^ • It can also be observed that as 

the mode number n increases (ie., for higher modes) the influence 

of foundation parameter'V decreases. The influence of increa¬ 

sing values of the warping parameter K can be observed to be 

increasing the frequency parameter )\2 irrespective of the ef¬ 

fect of the continuous elastic foundation. It can be concluded 
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TABLE- 3.5 

B of_Jh53_|^gfllL'?)pJ?y-r!!}XS\mi9JL.h£ov_J3.iPiaJ_ gurrJ23±0d.J^lP= 
ffiSj-AecL beaing of open section on Elastic foundation for varioua 
yalueB~°f foundation parapetor r for a valuo of warping: para¬ 
meter K = 0.01. 

Number 
of Mode Number of Elements 6 Exact Results 

0 

2 

4 

6 

8 

10 

12 

I 97.42036 
II 1561.06689 

III 7952.49806 ...... 
IV 25529.69145 

V 64155.57041 

I 113.42420 113.566986 
II 1577.08105 1577.060061 

III 7968.49513 7918.854505 
IV 25545.68363 24992.914115 

V 64171.59385 60994.773544 

I 161.41571 161.566986 
II 1625.07593 1625.060061 

III 8016.49122 7966.854505 
IV 25593.67192 25040.914115 

V 64219.60948 61042.773544 

I 241.41577 • 241.566986 
II 1705.07324 1705.060061 

III 8096.49122 8046.854505 
IV 25673.68363 25120.914115 

V 64299.58604 61122.773544 

I 353.42065 353.567017 
II 1817.07251 1817.060061 

III 8208.49221 8159.854505 
IV 25785.68754 25232.914115 

V 64411.55479 61234.773544 

I 497.42071 497.567017 
II 1961.07226 1961.060061 

III 8352.50002 8302.855491 
IV 25929.67582 25376.914115 

V 64555.60948 61378.773544 

I 673.41674 673.567018 
II 2137.07080 2137.060065 

III 8528.49807 8478.855491 
IV 26105.66801 25552.914115 

V 64731.57823 61554.773544 



TABLE- 5.4. 
.3- 

Vftlu.e.g. of the Frequency parameter ^ for simply supported thln- 

walled beams of open section on Elastic foundation for various 

Tallies of foundation parameter^ for a value of warping para¬ 

meter E = ckioo. 

i Number 
of Mode Number of Elements 6 Exact Results 

i 97.51748 
ii 1561.46094 

0 III 7953.36817 _ 
IV 25531.24613 

V 64158.03915 

I 113-52183 113.664779 
II 1577.46582 1577.451174 

2 III 7969.38282 7919.735364 
IV 25547.23442 24994.476615 

V 64174.04696 60997.218841 

' I. 161.51513 161.664795 
II 1625.46216 ' 1625.451174 

4 III 8017.38184 7967.735364 
IV 25595.25395 25042.437615 

4 
V 64222.00010 61045.218841 

y I 241.51611 241.664795 
II 1705.46167 1705.451174 

6 III 8097.40040 8047.735364 
IV 25675.24613 25122.476615 

V 64302.00790 61125.218841 

I 353.51928 3530664795 
II 1817.46264 1817.451174 

8 III 8209.38088 8159.735364 
IV 25787.25786 25234.476615 

V 64413.99220 61237.218841 

I , 497.51690 497.664795 
II 1961.46142 1961.451174 

10 III 8353.38479 8303.736354 
IV 25931.24613 25378.476615 

V 64558.05477 61381.218841 

• I 673.51562 673.664796 
II 2137.45606 2137.45117 

12 III 8529.28283 8479.736354 
IV 26107.25395 25554.476615 

V 64734.04696 61457.218841 
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therefore, that Increase in the values of warping parameter K 

and foundation parameter V contribute for the increase in the 

torsional frequency parameter >, 2. 

In Tables 3.7, 3.8 and 3.9, the values of the frequency 

parameter A 2 for the first five modes of vibration are presen¬ 

ted for simply-supported, fixed-fixed and, fixed-simply suppor¬ 

ted beams respectively, for various values of axial load para¬ 

meter A and foundation parameter V , for a value of warping 

parameter K = 1. These results are given for a division of the 

beam into four and six segments. It can be observed from Table 

3.7, that the results for the simply-supported beams compare 

well with the exact ones. It can be also notioed that increase 

in the value of axial load parameter A , for any constant or 

zero values of the foundation parameter V and warping parameter 

K, is to decrease the value of the frequency parameter ^2. 

Similarly it can be observed that, for any constant or zero 

values of the axial load parameter^ , the increase in the values 

of foundation parameter V and warping parameter K is to increase 

the value of the frequency parameter A^« 

Hence It can be concluded that the combined influence of 

axial load parameter A , foundation parameter ^ and warping 

parameter K on the frequency parameter A2 is the algebraic sum 

of the individual influences of these parameters. In general, 

for all the cases presented here, the results from the finite 

element analysis are in excellent agreement with the exact results 

from Chapter II, and the oonvorgonoo of the results is quite satis- 
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factory for a division of the beam into six elements. Hencef 

the finite element model presented In this Chapter, which in¬ 

cludes the effects of warping, axial compressive load and ela¬ 

stic foundation is quite satisfactory and yields good results. 
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